文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测乳腺癌新辅助治疗结果的多模态深度学习:一项系统综述

Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review.

作者信息

Krasniqi Eriseld, Filomeno Lorena, Arcuri Teresa, Ferretti Gianluigi, Gasparro Simona, Fulvi Alberto, Roselli Arianna, D'Onofrio Loretta, Pizzuti Laura, Barba Maddalena, Maugeri-Saccà Marcello, Botti Claudio, Graziano Franco, Puccica Ilaria, Cappelli Sonia, Pelle Fabio, Cavicchi Flavia, Villanucci Amedeo, Paris Ida, Calabrò Fabio, Rea Sandra, Costantini Maurizio, Perracchio Letizia, Sanguineti Giuseppe, Takanen Silvia, Marucci Laura, Greco Laura, Kayal Rami, Moscetti Luca, Marchesini Elisa, Calonaci Nicola, Blandino Giovanni, Caravagna Giulio, Vici Patrizia

机构信息

Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.

Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.

出版信息

Biol Direct. 2025 Jun 23;20(1):72. doi: 10.1186/s13062-025-00661-8.


DOI:10.1186/s13062-025-00661-8
PMID:40551237
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12183913/
Abstract

BACKGROUND: Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR prediction accuracy. This systematic review synthesizes evidence on multimodal DL for pCR prediction and compares its performance against unimodal DL. METHODS: Following PRISMA, we searched PubMed, Embase, and Web of Science (January 2015-April 2025) for studies applying DL to predict pCR in BC patients receiving NAST, using data from radiology, digital pathology (DP), multi-omics, and/or clinical records, and reporting AUC. Data on study design, DL architectures, and performance (AUC) were extracted. A narrative synthesis was conducted due to heterogeneity. RESULTS: Fifty-one studies, mostly retrospective (90.2%, median cohort 281), were included. Magnetic resonance imaging and DP were common primary modalities. Multimodal approaches were used in 52.9% of studies, often combining imaging with clinical data. Convolutional neural networks were the dominant architecture (88.2%). Longitudinal imaging improved prediction over baseline-only (median AUC 0.91 vs. 0.82). Overall, the median AUC across studies was 0.88, with 35.3% achieving AUC ≥ 0.90. Multimodal models showed a modest but consistent improvement over unimodal approaches (median AUC 0.88 vs. 0.83). Omics and clinical text were rarely primary DL inputs. CONCLUSION: DL models demonstrate promising accuracy for pCR prediction, especially when integrating multiple modalities and longitudinal imaging. However, significant methodological heterogeneity, reliance on retrospective data, and limited external validation hinder clinical translation. Future research should prioritize prospective validation, integration underutilized data (multi-omics, clinical), and explainable AI to advance DL predictors to the clinical setting.

摘要

背景:新辅助全身治疗(NAST)后的病理完全缓解(pCR)是乳腺癌(BC)中已确立的预后标志物。整合多种数据源(放射学、病理学、组学、临床)的多模态深度学习(DL)有望提高pCR预测的准确性。本系统评价综合了关于用于pCR预测的多模态DL的证据,并将其性能与单模态DL进行比较。 方法:按照PRISMA指南,我们检索了PubMed、Embase和Web of Science(2015年1月至2025年4月),以查找应用DL来预测接受NAST的BC患者pCR的研究,这些研究使用来自放射学、数字病理学(DP)、多组学和/或临床记录的数据,并报告曲线下面积(AUC)。提取关于研究设计、DL架构和性能(AUC)的数据。由于存在异质性,进行了叙述性综合分析。 结果:纳入了51项研究,大多为回顾性研究(90.2%,队列中位数为281)。磁共振成像和DP是常见的主要模态。52.9%的研究使用了多模态方法,通常将影像学与临床数据相结合。卷积神经网络是主要的架构(88.2%)。纵向成像比仅使用基线成像能更好地改善预测(中位AUC为0.91对0.82)。总体而言,各研究的中位AUC为0.88,35.3%的研究AUC≥0.90。多模态模型比单模态方法显示出适度但一致的改善(中位AUC为0.88对0.83)。组学和临床文本很少作为DL的主要输入。 结论:DL模型在pCR预测方面显示出有前景的准确性,尤其是在整合多种模态和纵向成像时。然而,显著的方法学异质性、对回顾性数据的依赖以及有限的外部验证阻碍了临床转化。未来的研究应优先进行前瞻性验证、整合未充分利用的数据(多组学、临床)以及可解释的人工智能,以将DL预测器推进到临床应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/1710ed2e7a0b/13062_2025_661_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/a52ff7536d1f/13062_2025_661_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/4f19b7491fe5/13062_2025_661_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/1710ed2e7a0b/13062_2025_661_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/a52ff7536d1f/13062_2025_661_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/4f19b7491fe5/13062_2025_661_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/12183913/1710ed2e7a0b/13062_2025_661_Fig3_HTML.jpg

相似文献

[1]
Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review.

Biol Direct. 2025-6-23

[2]
The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery.

Cochrane Database Syst Rev. 2021-12-21

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Development and validation of an MRI spatiotemporal interaction model for early noninvasive prediction of neoadjuvant chemotherapy response in breast cancer: a multicentre study.

EClinicalMedicine. 2025-6-12

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Eur J Surg Oncol. 2024-11-15

[8]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[9]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[10]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

本文引用的文献

[1]
A multimodal and fully automated system for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer.

Sci Adv. 2025-5-2

[2]
Next-generation sequencing based deep learning model for prediction of HER2 status and response to HER2-targeted neoadjuvant chemotherapy.

J Cancer Res Clin Oncol. 2025-2-9

[3]
Multimodal deep learning approaches for precision oncology: a comprehensive review.

Brief Bioinform. 2024-11-22

[4]
The RRP9-JUN axis promotes breast cancer progression via the AKT signalling pathway.

Biol Direct. 2024-12-20

[5]
Monitoring Over Time of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients Through an Ensemble Vision Transformers-Based Model.

Cancer Med. 2024-12

[6]
EpiBrCan-Lite: A lightweight deep learning model for breast cancer subtype classification using epigenomic data.

Comput Methods Programs Biomed. 2025-3

[7]
NACNet: A histology context-aware transformer graph convolution network for predicting treatment response to neoadjuvant chemotherapy in Triple Negative Breast Cancer.

Comput Med Imaging Graph. 2024-12

[8]
Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.

JCO Clin Cancer Inform. 2024-11

[9]
An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer.

Nat Commun. 2024-11-7

[10]
Predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer using a machine learning approach.

Breast Cancer Res. 2024-10-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索