Krasniqi Eriseld, Filomeno Lorena, Arcuri Teresa, Ferretti Gianluigi, Gasparro Simona, Fulvi Alberto, Roselli Arianna, D'Onofrio Loretta, Pizzuti Laura, Barba Maddalena, Maugeri-Saccà Marcello, Botti Claudio, Graziano Franco, Puccica Ilaria, Cappelli Sonia, Pelle Fabio, Cavicchi Flavia, Villanucci Amedeo, Paris Ida, Calabrò Fabio, Rea Sandra, Costantini Maurizio, Perracchio Letizia, Sanguineti Giuseppe, Takanen Silvia, Marucci Laura, Greco Laura, Kayal Rami, Moscetti Luca, Marchesini Elisa, Calonaci Nicola, Blandino Giovanni, Caravagna Giulio, Vici Patrizia
Phase IV Clinical Studies Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
Biol Direct. 2025 Jun 23;20(1):72. doi: 10.1186/s13062-025-00661-8.
BACKGROUND: Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical), holds promise for improving pCR prediction accuracy. This systematic review synthesizes evidence on multimodal DL for pCR prediction and compares its performance against unimodal DL. METHODS: Following PRISMA, we searched PubMed, Embase, and Web of Science (January 2015-April 2025) for studies applying DL to predict pCR in BC patients receiving NAST, using data from radiology, digital pathology (DP), multi-omics, and/or clinical records, and reporting AUC. Data on study design, DL architectures, and performance (AUC) were extracted. A narrative synthesis was conducted due to heterogeneity. RESULTS: Fifty-one studies, mostly retrospective (90.2%, median cohort 281), were included. Magnetic resonance imaging and DP were common primary modalities. Multimodal approaches were used in 52.9% of studies, often combining imaging with clinical data. Convolutional neural networks were the dominant architecture (88.2%). Longitudinal imaging improved prediction over baseline-only (median AUC 0.91 vs. 0.82). Overall, the median AUC across studies was 0.88, with 35.3% achieving AUC ≥ 0.90. Multimodal models showed a modest but consistent improvement over unimodal approaches (median AUC 0.88 vs. 0.83). Omics and clinical text were rarely primary DL inputs. CONCLUSION: DL models demonstrate promising accuracy for pCR prediction, especially when integrating multiple modalities and longitudinal imaging. However, significant methodological heterogeneity, reliance on retrospective data, and limited external validation hinder clinical translation. Future research should prioritize prospective validation, integration underutilized data (multi-omics, clinical), and explainable AI to advance DL predictors to the clinical setting.
背景:新辅助全身治疗(NAST)后的病理完全缓解(pCR)是乳腺癌(BC)中已确立的预后标志物。整合多种数据源(放射学、病理学、组学、临床)的多模态深度学习(DL)有望提高pCR预测的准确性。本系统评价综合了关于用于pCR预测的多模态DL的证据,并将其性能与单模态DL进行比较。 方法:按照PRISMA指南,我们检索了PubMed、Embase和Web of Science(2015年1月至2025年4月),以查找应用DL来预测接受NAST的BC患者pCR的研究,这些研究使用来自放射学、数字病理学(DP)、多组学和/或临床记录的数据,并报告曲线下面积(AUC)。提取关于研究设计、DL架构和性能(AUC)的数据。由于存在异质性,进行了叙述性综合分析。 结果:纳入了51项研究,大多为回顾性研究(90.2%,队列中位数为281)。磁共振成像和DP是常见的主要模态。52.9%的研究使用了多模态方法,通常将影像学与临床数据相结合。卷积神经网络是主要的架构(88.2%)。纵向成像比仅使用基线成像能更好地改善预测(中位AUC为0.91对0.82)。总体而言,各研究的中位AUC为0.88,35.3%的研究AUC≥0.90。多模态模型比单模态方法显示出适度但一致的改善(中位AUC为0.88对0.83)。组学和临床文本很少作为DL的主要输入。 结论:DL模型在pCR预测方面显示出有前景的准确性,尤其是在整合多种模态和纵向成像时。然而,显著的方法学异质性、对回顾性数据的依赖以及有限的外部验证阻碍了临床转化。未来的研究应优先进行前瞻性验证、整合未充分利用的数据(多组学、临床)以及可解释的人工智能,以将DL预测器推进到临床应用中。
Health Technol Assess. 2006-9
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2022-9-26
Cochrane Database Syst Rev. 2018-1-16
Brief Bioinform. 2024-11-22
Biol Direct. 2024-12-20
Comput Methods Programs Biomed. 2025-3
JCO Clin Cancer Inform. 2024-11