Suppr超能文献

JLCRB:一种基于统一多视图的环状 RNA 结合位点联合表示学习方法。

JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction.

机构信息

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, Anhui, China; School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China.

School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China.

出版信息

J Biomed Inform. 2022 Dec;136:104231. doi: 10.1016/j.jbi.2022.104231. Epub 2022 Oct 26.

Abstract

CircRNAs usually bind to the corresponding RBPs(RNA Binding proteins) and play a key role in gene regulation. Therefore, it is important to identify the binding sites of RBPs on CircRNAs for the regulation of certain diseases. Due to the information provided by the single view feature is limited, the current mainstream methods are mainly to detect the RBP binding sites by constructing multi-view models. However, with the number of view features increases, the invalid information also increases, and the existing methods only simply concatenate together various features from different views, while ignoring the intrinsic connection between multi-view data. To solve this problem, we propose a new multi-view joint representation learning network by improving the consistency of multi-view feature information. First, the network uses different feature encoding methods to fully extract the feature information of RNA, respectively. Then we construct the intrinsic connection between the views by generating a global joint representation of multiple views, and this is used for feature calibration of each view to highlight important features and suppress unimportant ones. Finally, the depth features obtained from the fusion of multiple views are used to detect the binding sites of RNAs. The average AUC of our method is 93.68% in 37 CircRNA-RBP datasets. The experimental results show that the prediction performance of the method is better than existing methods. The code and datasets are obtained at https://github.com/Xuezg/JLCRB. In addition, we also provide a free web server that is freely available at http://82.157.188.204/JLCRB/.

摘要

CircRNAs 通常与相应的 RBPs(RNA 结合蛋白)结合,在基因调控中发挥关键作用。因此,确定 RBPs 在 CircRNAs 上的结合位点对于某些疾病的调控非常重要。由于单一视图特征提供的信息有限,目前主流方法主要通过构建多视图模型来检测 RBP 结合位点。然而,随着视图特征数量的增加,无效信息也会增加,并且现有的方法只是简单地将来自不同视图的各种特征串联在一起,而忽略了多视图数据之间的内在联系。为了解决这个问题,我们通过改进多视图特征信息的一致性,提出了一种新的多视图联合表示学习网络。首先,该网络使用不同的特征编码方法来充分提取 RNA 的特征信息。然后,我们通过生成多个视图的全局联合表示来构建视图之间的内在联系,并使用该联系对每个视图进行特征校准,以突出重要特征并抑制不重要特征。最后,使用融合多个视图的深度特征来检测 RNA 的结合位点。在 37 个 CircRNA-RBP 数据集上,我们的方法的平均 AUC 为 93.68%。实验结果表明,该方法的预测性能优于现有方法。代码和数据集可在 https://github.com/Xuezg/JLCRB 获得。此外,我们还提供了一个免费的网络服务器,可在 http://82.157.188.204/JLCRB/ 免费使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验