Suppr超能文献

基于碱基分辨率转换器模型解码环状 RNA 上的蛋白质结合图谱。

Decoding protein binding landscape on circular RNAs with base-resolution transformer models.

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, And Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

Center for Brain-Like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Comput Biol Med. 2024 Mar;171:108175. doi: 10.1016/j.compbiomed.2024.108175. Epub 2024 Feb 22.

Abstract

Circular RNAs (circRNAs), a class of endogenous RNA with a covalent loop structure, can regulate gene expression by serving as sponges for microRNAs and RNA-binding proteins (RBPs). To date, most computational methods for predicting RBP binding sites on circRNAs focus on circRNA fragments instead of circRNAs. These methods detect whether a circRNA fragment contains binding sites, but cannot determine where are the binding sites and how many binding sites are on the circRNA transcript. We report a hybrid deep learning-based tool, CircSite, to predict RBP binding sites at single-nucleotide resolution and detect key contributed nucleotides on circRNA transcripts. CircSite takes advantage of convolutional neural networks (CNNs) and Transformer for learning local and global representations of circRNAs binding to RBPs, respectively. We construct 37 datasets of circRNAs interacting with proteins for benchmarking and the experimental results show that CircSite offers accurate predictions of RBP binding nucleotides and detects key subsequences aligning well with known binding motifs. CircSite is an easy-to-use online webserver for predicting RBP binding sites on circRNA transcripts and freely available at http://www.csbio.sjtu.edu.cn/bioinf/CircSite/.

摘要

环状 RNA(circRNAs)是一类具有共价环结构的内源性 RNA,可通过充当 microRNA 和 RNA 结合蛋白(RBPs)的海绵来调节基因表达。迄今为止,大多数用于预测 circRNA 上 RBP 结合位点的计算方法都集中在 circRNA 片段上,而不是 circRNA 本身。这些方法检测 circRNA 片段是否包含结合位点,但不能确定结合位点在哪里以及 circRNA 转录本上有多少个结合位点。我们报告了一种基于混合深度学习的工具 CircSite,用于以单核苷酸分辨率预测 RBP 结合位点,并检测 circRNA 转录本上的关键贡献核苷酸。CircSite 利用卷积神经网络(CNNs)和 Transformer 分别学习 circRNA 与 RBPs 结合的局部和全局表示。我们构建了 37 个与蛋白质相互作用的 circRNAs 数据集进行基准测试,实验结果表明 CircSite 能够准确预测 RBP 结合核苷酸,并检测到与已知结合基序很好对齐的关键亚序列。CircSite 是一个易于使用的在线 web 服务器,用于预测 circRNA 转录本上的 RBP 结合位点,可在 http://www.csbio.sjtu.edu.cn/bioinf/CircSite/ 上免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验