文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Conjugated PNC-27 peptide/PEI-superparamagnetic iron oxide nanoparticles (SPIONs) as a double targeting agent for early cancer diagnosis: study.

作者信息

Rahmani Reihaneh, Darroudi Majid, Gharanfoli Mohsen, Chamani Jamshidkhan, Gholamin Mehran, Hashemi Maryam

机构信息

Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.

Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran.

出版信息

Iran J Basic Med Sci. 2022 Oct;25(10):1234-1242. doi: 10.22038/IJBMS.2022.65590.14430.


DOI:10.22038/IJBMS.2022.65590.14430
PMID:36311203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9588323/
Abstract

OBJECTIVES: Superparamagnetic iron oxide nanoparticles (SPIONs) have been considered promising non-invasive imaging tools in medicine. However, their high surface energy leads to NPs aggregation, while non-targeted SPIONs can cause cytotoxic effects on normal cells. In this work, we evaluated the potential of polyethyleneimine (PEI)-SPIONs targeted by PNC-27 peptide as a double targeting agent throughout early cancer diagnosis. MATERIALS AND METHODS: Initially, PEI was conjugated to PNC-27 with HDM-2-binding domain. Then, SPIONs were loaded into PEI-PNC-27 through the ligand exchange method. The physicochemical characteristics of the synthesized NPs were evaluated. The cytotoxicity and targeting efficiency were assayed against HT-29 and CT-26 cell lines along with NIH-3t3 as normal cells by MTT method and Prussian blue staining test, respectively. RESULTS: The mean diameter of synthesized carriers was obtained in the range of 86.6 - 116.1 nm with a positive charge. According to the cytotoxicity results, the binding and uptake abilities of the PNC-27 peptide by cancer cells were significantly higher than that of the NIH-3t3 cells. However, the results were indicative of the more toxic impacts of targeted synthesized NPs against CT-26 cancer cell line when being compared with HT-29 cells, which may be caused by the different cytotoxicity mechanisms of NPs. In addition, the targeted carriers and SPIONs were present inside and around the cells with HDM-2 expression along with only a few non-targeted vectors, while displaying no appearance throughout the normal cell. CONCLUSION: The results indicated the efficiency of targeted PEI-coated SPIONs for cancer diagnostic applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/b68290b5660c/IJBMS-25-1234-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/9aeecc7f5e55/IJBMS-25-1234-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/76bffbef7b45/IJBMS-25-1234-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/4ff2f84fd641/IJBMS-25-1234-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/701be2b9e7e9/IJBMS-25-1234-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/2aa4ea455594/IJBMS-25-1234-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/c195d364d2c0/IJBMS-25-1234-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/29c30b89858b/IJBMS-25-1234-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/8f9a8d7836c3/IJBMS-25-1234-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/b68290b5660c/IJBMS-25-1234-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/9aeecc7f5e55/IJBMS-25-1234-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/76bffbef7b45/IJBMS-25-1234-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/4ff2f84fd641/IJBMS-25-1234-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/701be2b9e7e9/IJBMS-25-1234-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/2aa4ea455594/IJBMS-25-1234-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/c195d364d2c0/IJBMS-25-1234-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/29c30b89858b/IJBMS-25-1234-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/8f9a8d7836c3/IJBMS-25-1234-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa0/9588323/b68290b5660c/IJBMS-25-1234-g009.jpg

相似文献

[1]
Conjugated PNC-27 peptide/PEI-superparamagnetic iron oxide nanoparticles (SPIONs) as a double targeting agent for early cancer diagnosis: study.

Iran J Basic Med Sci. 2022-10

[2]
Optimization, Characterization and in vivo Evaluation of Paclitaxel-Loaded Folate-Conjugated Superparamagnetic Iron Oxide Nanoparticles.

Int J Nanomedicine. 2021

[3]
Surface modification of superparamagnetic iron oxide (SPION) and comparison of cytotoxicity effect of mPEG2000-PEI-SPION and mPEG750-PEI-SPION on the human embryonic carcinoma stem cell, NTERA2 cell line.

Hum Antibodies. 2020

[4]
The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI.

Mater Sci Eng C Mater Biol Appl. 2016-5

[5]
Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer.

Colloids Surf B Biointerfaces. 2016-2-27

[6]
Matrix-dispersed PEI-coated SPIONs for fast and efficient removal of anionic dyes from textile wastewater samples: Applications to triphenylmethanes.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-3-15

[7]
Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells.

Langmuir. 2011-2-22

[8]
Lomustine Loaded Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Treatment of Glioblastoma Multiforma (GBM).

Iran J Pharm Res. 2020

[9]
Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects.

Nanoscale. 2016-7-11

[10]
Plasmid-DNA Delivery by Covalently Functionalized PEI-SPIONs as a Potential 'Magnetofection' Agent.

Molecules. 2022-11-1

引用本文的文献

[1]
Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents.

Pharmaceutics. 2023-4-7

本文引用的文献

[1]
Engineering of magnetic nanoparticles as magnetic particle imaging tracers.

Chem Soc Rev. 2021-7-19

[2]
Nanotechnology in cancer diagnosis: progress, challenges and opportunities.

J Hematol Oncol. 2019-12-17

[3]
Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis.

Nanomedicine. 2019-7-18

[4]
Pluronic F127-Folate Coated Super Paramagenic Iron Oxide Nanoparticles as Contrast Agent for Cancer Diagnosis in Magnetic Resonance Imaging.

Polymers (Basel). 2019-4-25

[5]
Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

Int J Nanomedicine. 2018-3-12

[6]
PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells.

Nanomedicine (Lond). 2017-6

[7]
In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy.

Eur J Pharm Biopharm. 2017-4

[8]
Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances.

Mater Today (Kidlington). 2016-4

[9]
In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody.

Int J Nanomedicine. 2016-5-19

[10]
Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI.

Iran J Basic Med Sci. 2016-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索