Suppr超能文献

针对存在较大先验不确定性的非线性模型的最优实验设计。

Optimal experiment design for nonlinear models subject to large prior uncertainties.

作者信息

Walter E, Pronzato L

出版信息

Am J Physiol. 1987 Sep;253(3 Pt 2):R530-4. doi: 10.1152/ajpregu.1987.253.3.R530.

Abstract

Classical experiment design generally yields an experiment that depends on the value of the parameters to be estimated, which are, of course, unknown. Assuming that the model parameters belong to a population with known statistics, we propose to take the a priori parameter uncertainty into account by optimizing the mathematical expectation of a functional of the Fisher information matrix. This optimization is performed with a stochastic approximation algorithm that makes robust experiment design almost as simple as classical D-optimal design. The resulting methodology is applied to the choice of measurement times for multiexponential models.

摘要

经典实验设计通常会产生一个依赖于待估计参数值的实验,而这些参数当然是未知的。假设模型参数属于一个具有已知统计量的总体,我们建议通过优化费希尔信息矩阵函数的数学期望来考虑先验参数不确定性。这种优化是通过一种随机近似算法进行的,该算法使稳健实验设计几乎与经典的D - 最优设计一样简单。所得方法应用于多指数模型测量时间的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验