Walter E, Pronzato L
Am J Physiol. 1987 Sep;253(3 Pt 2):R530-4. doi: 10.1152/ajpregu.1987.253.3.R530.
Classical experiment design generally yields an experiment that depends on the value of the parameters to be estimated, which are, of course, unknown. Assuming that the model parameters belong to a population with known statistics, we propose to take the a priori parameter uncertainty into account by optimizing the mathematical expectation of a functional of the Fisher information matrix. This optimization is performed with a stochastic approximation algorithm that makes robust experiment design almost as simple as classical D-optimal design. The resulting methodology is applied to the choice of measurement times for multiexponential models.
经典实验设计通常会产生一个依赖于待估计参数值的实验,而这些参数当然是未知的。假设模型参数属于一个具有已知统计量的总体,我们建议通过优化费希尔信息矩阵函数的数学期望来考虑先验参数不确定性。这种优化是通过一种随机近似算法进行的,该算法使稳健实验设计几乎与经典的D - 最优设计一样简单。所得方法应用于多指数模型测量时间的选择。