Suppr超能文献

将水凝胶整合到以多孔膜为支架的微流控装置中,可实现其干燥和重构。

Integration of hydrogels into microfluidic devices with porous membranes as scaffolds enables their drying and reconstitution.

作者信息

Shahriari Shadi, Selvaganapathy P Ravi

机构信息

Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.

出版信息

Biomicrofluidics. 2022 Oct 27;16(5):054108. doi: 10.1063/5.0100589. eCollection 2022 Sep.

Abstract

Hydrogels are a critical component of many microfluidic devices. They have been used in cell culture applications, biosensors, gradient generators, separation microdevices, micro-actuators, and microvalves. Various techniques have been utilized to integrate hydrogels into microfluidic devices such as flow confinement and gel photopolymerization. However, in these methods, hydrogels are typically introduced in post processing steps which add complexity, cost, and extensive fabrication steps to the integration process and can be prone to user induced variations. Here, we introduce an inexpensive method to locally integrate hydrogels into microfluidic devices during the fabrication process without the need for post-processing. In this method, porous and fibrous membranes such as electrospun membranes are used as scaffolds to hold gels and they are patterned using xurography. Hydrogels in various shapes as small as 200 m can be patterned using this method in a scalable manner. The electrospun scaffold facilitates drying and reconstitution of these gels without loss of shape or leakage that is beneficial in a number of applications. Such reconstitution is not feasible using other hydrogel integration techniques. Therefore, this method is suitable for long time storage of hydrogels in devices which is useful in point-of-care (POC) devices. This hydrogel integration method was used to demonstrate gel electrophoretic concentration and quantification of short DNA (150 bp) with different concentrations in rehydrated agarose embedded in electrospun polycaprolactone (PCL) membrane. This can be developed further to create a POC device to quantify cell-free DNA, which is a prognostic biomarker for severe sepsis patients.

摘要

水凝胶是许多微流控设备的关键组成部分。它们已被用于细胞培养应用、生物传感器、梯度发生器、分离微器件、微致动器和微阀。已经采用了各种技术将水凝胶集成到微流控设备中,如流动限制和凝胶光聚合。然而,在这些方法中,水凝胶通常是在后期处理步骤中引入的,这增加了集成过程的复杂性、成本和大量制造步骤,并且容易出现用户引起的变化。在这里,我们介绍一种廉价的方法,在制造过程中无需后处理即可将水凝胶局部集成到微流控设备中。在这种方法中,多孔和纤维膜(如电纺膜)用作支撑凝胶的支架,并使用刻字术进行图案化。使用这种方法可以以可扩展的方式对小至200μm的各种形状的水凝胶进行图案化。电纺支架有助于这些凝胶的干燥和重构,而不会出现形状损失或泄漏,这在许多应用中是有益的。使用其他水凝胶集成技术无法实现这种重构。因此,这种方法适用于在设备中长期储存水凝胶,这在即时检测(POC)设备中很有用。这种水凝胶集成方法用于在嵌入电纺聚己内酯(PCL)膜的再水化琼脂糖中对不同浓度的短DNA(150bp)进行凝胶电泳浓缩和定量。这可以进一步开发以创建一种POC设备来定量无细胞DNA,无细胞DNA是重症脓毒症患者的一种预后生物标志物。

相似文献

8
Photo-crosslinkable hydrogel-based 3D microfluidic culture device.基于光交联水凝胶的三维微流控培养装置
Electrophoresis. 2015 Apr;36(7-8):994-1001. doi: 10.1002/elps.201400465. Epub 2015 Mar 24.

本文引用的文献

6
Microfluidics Based Point-of-Care Diagnostics.基于微流控技术的即时诊断。
Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700047. Epub 2017 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验