Suppr超能文献

从基础到突破:微流控设备在水凝胶微滴生成中的历程

From Basic to Breakthroughs: The Journey of Microfluidic Devices in Hydrogel Droplet Generation.

作者信息

Hinojosa-Ventura Gabriela, Acosta-Cuevas José Manuel, Velázquez-Carriles Carlos Arnulfo, Navarro-López Diego E, López-Alvarez Miguel Ángel, Ortega-de la Rosa Néstor D, Silva-Jara Jorge Manuel

机构信息

Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico.

Departamento de Innovación Tecnológica, Centro Universitario de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico.

出版信息

Gels. 2025 Apr 22;11(5):309. doi: 10.3390/gels11050309.

Abstract

Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10-500 nm) to micrometers (1-500 µm), depending on the specific application and method of preparation. These characteristics render them optimal carriers for the administration of active compounds, facilitating the regulated and prolonged release of pharmaceuticals, including anticancer agents, antibiotics, and therapeutic proteins. Hydrogel particles can exhibit various morphologies, including spherical, rod-shaped, disk-shaped, and core-shell structures. Each shape offers distinct advantages, such as improved circulation time, targeted drug delivery, or enhanced cellular uptake. Additionally, hydrogel particles can be engineered to respond to various stimuli, such as temperature, pH, light, magnetic fields, and biochemical signals. Furthermore, their biocompatibility and capacity to acclimate to many biological conditions make them appropriate for sophisticated applications, including gene treatments, tissue regeneration, and cell therapies. Microfluidics has transformed the creation of hydrogel particles, providing precise control over their dimensions, morphology, and stability. This technique facilitates reproducible and highly efficient production, reducing reagent waste and optimizing drug encapsulation. The integration of microfluidics with hydrogels provides opportunities for the advancement of creative and effective solutions in contemporary medicine.

摘要

水凝胶颗粒在生物应用中至关重要,因为它们具有独特的保水能力,并能在其三维结构中包裹活性分子。典型的颗粒尺寸范围从纳米(10 - 500纳米)到微米(1 - 500微米),这取决于具体应用和制备方法。这些特性使其成为活性化合物给药的理想载体,有助于药物(包括抗癌剂、抗生素和治疗性蛋白质)的可控和长效释放。水凝胶颗粒可呈现多种形态,包括球形、棒状、盘状和核壳结构。每种形状都有独特的优势,如延长循环时间、靶向给药或增强细胞摄取。此外,水凝胶颗粒可以设计成对各种刺激作出反应,如温度、pH值、光、磁场和生化信号。此外,它们的生物相容性以及适应多种生物条件的能力使其适用于复杂的应用,包括基因治疗、组织再生和细胞疗法。微流控技术改变了水凝胶颗粒的制备方式,能够精确控制其尺寸、形态和稳定性。该技术有助于实现可重复且高效的生产,减少试剂浪费并优化药物封装。微流控技术与水凝胶的结合为当代医学中创新和有效解决方案的发展提供了机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd6/12110922/b6de7b9f871c/gels-11-00309-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验