Giacoman-Lozano Mayela, Meléndez-Ramírez César, Martinez-Ledesma Emmanuel, Cuevas-Diaz Duran Raquel, Velasco Iván
Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico.
Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
Front Cell Dev Biol. 2022 Oct 13;10:1001701. doi: 10.3389/fcell.2022.1001701. eCollection 2022.
Neural induction, both and , includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
神经诱导,包括 和 ,涵盖了细胞和分子层面的变化,这些变化导致了与特定转录模式相关的表型特化。这些变化是通过复杂基因调控网络的实施来实现的。此外,这些调控网络受到表观遗传机制的影响,表观遗传机制以一种可控且复杂的方式驱动细胞异质性和细胞类型特异性。表观遗传标记,如DNA甲基化和组蛋白残基修饰,在神经发生过程中具有高度动态性和阶段特异性。对这些修饰进行全基因组评估有助于识别参与神经细胞分化、成熟和可塑性的不同非编码调控区域。增强子是短的DNA调控区域,可结合转录因子(TFs)并与基因启动子相互作用以增加转录活性。它们在神经科学中具有特殊意义,因为它们在神经元中富集,并且是细胞类型特异性和动态基因表达谱的基础。对神经亚型的完整表观基因组景观进行分类,对于更好地理解大脑健康和疾病期间的基因调控非常重要。新一代高通量测序技术、基因组编辑、全基因组关联研究(GWAS)、干细胞分化和脑类器官等方面的进展,使研究人员能够以前所未有的分辨率研究大脑发育和神经退行性疾病。在此,我们描述了与哺乳动物神经发生相关的重要表观遗传机制。我们重点关注神经增强子在神经发生、细胞命运决定和神经元可塑性中的潜在作用。我们综述了有关神经发生中表观遗传调控机制的最新发现,并讨论了增强子内的序列变异如何可能与神经和精神疾病的遗传风险相关。