Suppr超能文献

利用群体异质性下外部聚合数据对半参数变换模型进行估计。

Semiparametric estimation of the transformation model by leveraging external aggregate data in the presence of population heterogeneity.

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan.

Department of Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, California, USA.

出版信息

Biometrics. 2023 Sep;79(3):1996-2009. doi: 10.1111/biom.13778. Epub 2022 Nov 10.

Abstract

Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.

摘要

近年来,利用外部来源的汇总数据中的信息来提高小规模研究的估计效率和预测准确性引起了广泛关注。然而,传统方法往往要么忽略外部信息中的不确定性,要么无法考虑内部和外部研究之间的异质性。本文提出了一种基于经验似然的框架,通过纳入外部来源关于 t 年亚组生存概率的信息,来改进半参数转换模型的估计。所提出的估计过程包含一个额外的似然分量,以考虑外部信息的不确定性,并采用密度比模型来描述总体异质性。我们建立了所提出的估计量的一致性和渐近正态性,并表明它比不结合信息的传统伪部分似然估计量更有效。模拟研究表明,即使在存在信息不确定性和异质性的情况下,所提出的估计量也几乎没有偏差,并且表现优于传统方法。所提出的方法通过对胰腺癌研究的分析进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验