Suppr超能文献

利用外部聚合信息进行边际加速失效时间模型。

Leveraging External Aggregated Information for the Marginal Accelerated Failure Time Model.

机构信息

School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China.

出版信息

Stat Med. 2024 Nov 30;43(27):5203-5216. doi: 10.1002/sim.10224. Epub 2024 Oct 8.

Abstract

It is becoming increasingly common for researchers to consider leveraging information from external sources to enhance the analysis of small-scale studies. While much attention has focused on univariate survival data, correlated survival data are prevalent in epidemiological investigations. In this article, we propose a unified framework to improve the estimation of the marginal accelerated failure time model with correlated survival data by integrating additional information given in the form of covariate effects evaluated in a reduced accelerated failure time model. Such auxiliary information can be summarized by using valid estimating equations and hence can then be combined with the internal linear rank-estimating equations via the generalized method of moments. We investigate the asymptotic properties of the proposed estimator and show that it is more efficient than the conventional estimator using internal data only. When population heterogeneity exists, we revise the proposed estimation procedure and present a shrinkage estimator to protect against bias and loss of efficiency. Moreover, the proposed estimation procedure can be further refined to accommodate the non-negligible uncertainty in the auxiliary information, leading to more trustable inference conclusions. Simulation results demonstrate the finite sample performance of the proposed methods, and empirical application on the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial substantiates its practical relevance.

摘要

越来越多的研究人员开始考虑利用外部信息来增强对小规模研究的分析。虽然单变量生存数据分析得到了广泛关注,但相关生存数据在流行病学研究中非常普遍。在本文中,我们提出了一个统一的框架,通过整合以减少的加速失效时间模型中的协变量效应评估形式给出的附加信息,来改进相关生存数据的边缘加速失效时间模型的估计。这种辅助信息可以通过有效的估计方程进行总结,然后可以通过广义矩方法与内部线性秩估计方程相结合。我们研究了所提出的估计量的渐近性质,并表明它比仅使用内部数据的常规估计量更有效。当存在群体异质性时,我们修正了所提出的估计程序,并提出了一种收缩估计量,以防止偏差和效率损失。此外,还可以进一步改进所提出的估计程序,以适应辅助信息中不可忽略的不确定性,从而得出更可信的推断结论。模拟结果表明了所提出方法的有限样本性能,并且对前列腺癌、肺癌、结肠癌和卵巢癌筛查试验的实际应用证实了其实际相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验