Suppr超能文献

分数阶脉冲神经元:用树突分形模型描述的分数阶漏电积分发放电路。

Fractional Spiking Neuron: Fractional Leaky Integrate-and-Fire Circuit Described with Dendritic Fractal Model.

作者信息

Deng Yabin, Liu Bijing, Huang Zenan, Liu Xiaojie, He Shan, Li Qiuhong, Guo Donghui

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1375-1386. doi: 10.1109/TBCAS.2022.3218294. Epub 2023 Feb 14.

Abstract

As dendrites are essential parts of neurons, they are crucial factors for neuronal activities to follow multiple timescale dynamics, which ultimately affect information processing and cognition. However, in the common SNN (Spiking Neural Networks), the hardware-based LIF (Leaky Integrate-and-Fire) circuit only simulates the single timescale dynamic of soma without relating dendritic morphologies, which may limit the capability of simulating neurons to process information. This study proposes the dendritic fractal model mainly for quantifying dendritic morphological effects containing branch and length. To realize this model, We design multiple analog fractional-order circuits (AFCs) which match their extended structures and parameters with the dendritic features. Then introducing AFC into FLIF (Fractional Leaky Integrate-and-Fire) neuron circuits can demonstrate the same multiple timescale dynamics of spiking patterns as biological neurons, including spiking adaptation, inter-spike variability with power-law distribution, first-spike latency, and intrinsic memory. By contrast, it further enhances the degree of mimicry of neuron models and provides a more accurate model for understanding neural computation and cognition mechanisms.

摘要

由于树突是神经元的重要组成部分,它们是神经元活动遵循多个时间尺度动态的关键因素,最终影响信息处理和认知。然而,在常见的脉冲神经网络(SNN)中,基于硬件的泄漏积分发放(LIF)电路仅模拟了胞体的单一时间尺度动态,而未涉及树突形态,这可能会限制模拟神经元处理信息的能力。本研究提出了树突分形模型,主要用于量化包含分支和长度的树突形态效应。为了实现该模型,我们设计了多个模拟分数阶电路(AFC),使其扩展结构和参数与树突特征相匹配。然后将AFC引入分数阶泄漏积分发放(FLIF)神经元电路中,可展现出与生物神经元相同的多个时间尺度的脉冲模式动态,包括脉冲适应、具有幂律分布的脉冲间期变异性、首次脉冲潜伏期和内在记忆。相比之下,它进一步提高了神经元模型的模拟程度,并为理解神经计算和认知机制提供了更准确的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验