Department of Industrial Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Yeongtong-gu, Suwon 16678, Republic of Korea.
Phys Chem Chem Phys. 2022 Nov 9;24(43):26870-26878. doi: 10.1039/d2cp04542g.
Graph neural networks (GNNs) have been proven effective in the fast and accurate prediction of nuclear magnetic resonance (NMR) chemical shifts of a molecule. Existing methods, despite their effectiveness, suffer from high space complexity and are therefore limited to relatively small molecules. In this work, we propose a scalable GNN for NMR chemical shift prediction. To reduce the space complexity, we sparsify the graph representation of a molecule by regarding only heavy atoms as nodes and their chemical bonds as edges. To better learn from the sparsified graph representation, we improve the message passing and readout functions in the GNN. For the message passing function, we adapt the attention mechanism and residual connection to better capture local information around each node. For the readout function, we use both node-level and graph-level embeddings as the local and global information to better predict node-level chemical shifts. Through the experimental investigation using C and H NMR datasets, we demonstrate that the proposed method yields higher prediction accuracy and is more scalable to large molecules having many heavy atoms.
图神经网络(GNN)已被证明在快速准确预测分子的核磁共振(NMR)化学位移方面非常有效。现有方法虽然有效,但存在空间复杂度高的问题,因此仅限于相对较小的分子。在这项工作中,我们提出了一种可扩展的 GNN 用于 NMR 化学位移预测。为了降低空间复杂度,我们通过仅将重原子视为节点并将其化学键视为边来稀疏化分子的图表示。为了更好地从稀疏化的图表示中学习,我们改进了 GNN 中的消息传递和读取功能。对于消息传递功能,我们采用注意力机制和残差连接来更好地捕获每个节点周围的局部信息。对于读取功能,我们同时使用节点级和图级嵌入作为局部和全局信息,以更好地预测节点级化学位移。通过使用 C 和 H NMR 数据集进行的实验研究,我们证明了所提出的方法可以提高预测精度,并且对于具有许多重原子的大分子更加可扩展。