Suppr超能文献

基于可穿戴设备数据的多种深度学习模型对精神分裂症和心境障碍进行鉴别诊断的决策支持系统。

Decision support system for the differentiation of schizophrenia and mood disorders using multiple deep learning models on wearable devices data.

机构信息

Department of Information Management, 34895Yuan Ze University, Taoyuan, Taiwan.

Department of Information Management, 34895Yuan Ze University, Taoyuan, Taiwan; Innovation Center for Big Data and Digital Convergence, 34895Yuan Ze University, Taoyuan, Taiwan.

出版信息

Health Informatics J. 2022 Oct-Dec;28(4):14604582221137537. doi: 10.1177/14604582221137537.

Abstract

In the modern world, with so much inherent stress, mental health disorders (MHDs) are becoming more common in every country around the globe, causing a significant burden on society and patients' families. MHDs come in many forms with various severities of symptoms and differing periods of suffering, and as a result it is difficult to differentiate between them and simple to confuse them with each other. Therefore, we propose a support system that employs deep learning (DL) with wearable device data to provide physicians with an objective reference resource by which to make differential diagnoses and plan treatment. We conducted experiments on open datasets containing activity motion signal data from wearable devices to identify schizophrenia and mood disorders (bipolar and unipolar), the datasets being named Psykose and Depresjon. The results showed that, in both workflow approaches, the proposed framework performed well in comparison with the traditional machine learning (ML) and DL methods. We concluded that applying DL models using activity motion signal data from wearable devices represents a prospective objective support system for MHD differentiation with a good performance.

摘要

在现代世界,由于存在诸多固有压力,精神健康障碍(MHD)在全球各国变得越来越普遍,给社会和患者家庭带来了巨大负担。MHD 有多种形式,症状严重程度不同,患病周期也不同,因此难以区分它们,很容易将它们混淆。因此,我们提出了一个支持系统,该系统使用深度学习(DL)和可穿戴设备数据,为医生提供客观的参考资源,以便进行鉴别诊断和制定治疗计划。我们在包含可穿戴设备活动运动信号数据的公开数据集上进行了实验,以识别精神分裂症和情绪障碍(双相和单相),这些数据集分别命名为 Psykose 和 Depresjon。结果表明,在这两种工作流程方法中,所提出的框架与传统的机器学习(ML)和 DL 方法相比表现良好。我们得出结论,使用可穿戴设备的活动运动信号数据应用 DL 模型代表了一种有前景的 MHD 鉴别客观支持系统,具有良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验