Suppr超能文献

深度学习在以指甲为参照的伤口尺寸测量中的应用。

Application of deep learning in wound size measurement using fingernail as the reference.

作者信息

Chang Dun-Hao, Nguyen Duc-Khanh, Nguyen Thi-Ngoc, Chan Chien-Lung

机构信息

Department of Information Management, Yuan Ze University, Taoyuan, Taiwan.

Department of Plastic and Reconstructive Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.

出版信息

BMC Med Inform Decis Mak. 2024 Dec 18;24(1):390. doi: 10.1186/s12911-024-02778-8.

Abstract

OBJECTIVE

Most current wound size measurement devices or applications require manual wound tracing and reference markers. Chronic wound care usually relies on patients or caregivers who might have difficulties using these devices. Considering a more human-centered design, we propose an automatic wound size measurement system by combining three deep learning (DL) models and using fingernails as a reference.

MATERIALS AND METHODS

DL models (Mask R-CNN, Yolov5, U-net) were trained and tested using photographs of chronic wounds and fingernails. Nail width was obtained through using Mask R-CNN, Yolov5 to crop the wound from the background, and U-net to calculate the wound area. The system's effectiveness and accuracy were evaluated with 248 images, and users' experience analysis was conducted with 30 participants.

RESULTS

Individual model training achieved a 0.939 Pearson correlation coefficient (PCC) for nail-width measurement. Yolov5 had the highest mean average precision (0.822) with an Intersection-over-Union threshold of 0.5. U-net achieved a mean pixel accuracy of 0.9523. The proposed system recognized 100% of fingernails and 97.76% of wounds in the test datasets. PCCs for converting nail width to measured and default widths were 0.875 and 0.759, respectively. Most inexperienced caregivers consider convenience is the most important factor when using a size-measuring tool. Our proposed system yielded 90% satisfaction in the convenience aspect as well as the overall evaluation.

CONCLUSION

The proposed system performs fast and easy-to-use wound size measurement with acceptable precision. Its novelty not only allows for conveniences and easy accessibility in homecare settings and for inexperienced caregivers; but also facilitates clinical treatments and documentation, and supports telemedicine.

摘要

目的

当前大多数伤口尺寸测量设备或应用程序都需要手动追踪伤口并使用参考标记。慢性伤口护理通常依赖于患者或护理人员,而他们在使用这些设备时可能会遇到困难。考虑到更以人为本的设计,我们提出了一种自动伤口尺寸测量系统,该系统通过结合三种深度学习(DL)模型并以指甲作为参考。

材料与方法

使用慢性伤口和指甲的照片对DL模型(Mask R-CNN、Yolov5、U-net)进行训练和测试。通过使用Mask R-CNN、Yolov5从背景中裁剪伤口,并使用U-net计算伤口面积来获得指甲宽度。使用248张图像评估了该系统的有效性和准确性,并对30名参与者进行了用户体验分析。

结果

单个模型训练在指甲宽度测量方面达到了0.939的皮尔逊相关系数(PCC)。Yolov5在交并比阈值为0.5时具有最高的平均精度(0.822)。U-net实现了0.9523的平均像素准确率。所提出的系统在测试数据集中识别出了100%的指甲和97.76%的伤口。将指甲宽度转换为测量宽度和默认宽度的PCC分别为0.875和0.759。大多数经验不足的护理人员认为,在使用尺寸测量工具时便利性是最重要的因素。我们提出的系统在便利性方面以及总体评价中获得了90%的满意度。

结论

所提出的系统能够以可接受的精度快速且易于使用地测量伤口尺寸。其新颖之处不仅在于为家庭护理环境中的患者和经验不足的护理人员提供便利和易于获取的方式;还在于促进临床治疗和文档记录,并支持远程医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/407f/11656912/44958b56ffd2/12911_2024_2778_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验