Suppr超能文献

NtrC 增强沙门氏菌 Typhimurium 在低营养和营养波动条件下的适合度。

NtrC Increases Fitness of Salmonella enterica Serovar Typhimurium under Low and Fluctuating Nutrient Conditions.

机构信息

Life Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India.

Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.

出版信息

J Bacteriol. 2022 Dec 20;204(12):e0026422. doi: 10.1128/jb.00264-22. Epub 2022 Nov 1.

Abstract

Enteric pathogens cycle between nutrient-rich host and nutrient-poor external environment. These pathogens compete for nutrients while cycling between host and external environment, and often experience starvation. In this context, we have studied the role of a global regulator (NtrC) of Salmonella Typhimurium. The C knockout mutation caused extended lag phase (8 h) and slow growth in the minimal medium. In lag phase, the wild-type cells showed ~60-fold more expression of C gene. Gene expression studies and biochemical assays showed that the extended lag phase and slow growth is due to slow metabolism, instead of nitrogen transport. Further, we observed that C knockout mutation led extended lag phase and slow growth, made ΔC mutant unable to compete with wild-type Typhimurium in both static and fluctuating nutrient condition. In addition to this, ΔC knockout mutant was unable to survive long-term nitrogen starvation (150 days). The nutrient recycling assays and gene expression studies revealed that rC gene is essential for rapid recycling of nutrients from the dead cells. Moreover, in the absence of C gene, magnesium limits the nutrient recycling efficiency of Typhimurium. Therefore, the C gene, which is often studied with respect to nitrogen scavenging in a low nitrogen growing condition, is required even in the adequate supply of nitrogen to maintain optimal growth and fast exit from the lag phase. Hence, we conclude that, the C expression is essential for competitive fitness of Typhimurium under the low and fluctuating nutrient condition. Typhimurium, both in host and external environment, faces enormous competition from other microorganisms. The competition may take place either in static or in fluctuating nutrient conditions. Thus, how Typhimurium survives under such overlapping stress conditions remained unclear. Therefore, using Typhimurium as model organism we report that a global regulator NtrC, found in enteric bacteria like Escherichia coli and Salmonella, activates the set of genes and operons involved in rapid adaptation and efficient nutrient recycling/scavenging. These properties enable cells to compete with other microbes under the characteristic feast-or-famine lifestyle of Typhimurium. Therefore, this work helps us to understand the starvation physiology of the enteric bacterial pathogen Typhimurium.

摘要

肠病原体在富含营养的宿主和营养贫瘠的外部环境之间循环。这些病原体在宿主和外部环境之间循环时争夺营养物质,经常经历饥饿。在这种情况下,我们研究了沙门氏菌 Typhimurium 的全局调节剂 (NtrC) 的作用。C 基因缺失突变导致最小培养基中的延滞期(8 小时)延长和生长缓慢。在延滞期,野生型细胞显示 C 基因的表达增加了约 60 倍。基因表达研究和生化测定表明,延滞期延长和生长缓慢是由于代谢缓慢,而不是氮转运。此外,我们观察到 C 基因缺失突变导致延滞期延长和生长缓慢,使ΔC 突变体在静态和波动营养条件下均无法与野生型 Typhimurium 竞争。除此之外,ΔC 基因缺失突变体无法在长期氮饥饿(150 天)中存活。营养回收测定和基因表达研究表明,rC 基因对于从死亡细胞中快速回收营养物质至关重要。此外,在缺乏 C 基因的情况下,镁限制了 Typhimurium 的营养回收效率。因此,C 基因在低氮生长条件下经常被研究用于氮的摄取,即使在氮供应充足的情况下,也需要 C 基因来维持最佳生长并快速退出延滞期。因此,我们得出结论,即使在氮供应充足的情况下,C 基因的表达对于 Typhimurium 在低氮和波动的营养条件下的竞争适应性也是必不可少的。在宿主和外部环境中,Typhimurium 面临着来自其他微生物的巨大竞争。这种竞争可能发生在静态或波动的营养条件下。因此,Typhimurium 如何在这种重叠的压力条件下生存仍然不清楚。因此,我们以 Typhimurium 为模型生物,报告了一种全局调节剂 NtrC,它存在于肠细菌如大肠杆菌和沙门氏菌中,激活了参与快速适应和有效营养回收/摄取的一组基因和操纵子。这些特性使细胞能够在 Typhimurium 的特征性饥饿或丰饶生活方式下与其他微生物竞争。因此,这项工作帮助我们了解肠病原体 Typhimurium 的饥饿生理学。

相似文献

1
NtrC Increases Fitness of Salmonella enterica Serovar Typhimurium under Low and Fluctuating Nutrient Conditions.
J Bacteriol. 2022 Dec 20;204(12):e0026422. doi: 10.1128/jb.00264-22. Epub 2022 Nov 1.
2
CRP improves the survival and competitive fitness of Typhimurium under starvation by controlling the cellular maintenance rate.
J Bacteriol. 2024 Aug 22;206(8):e0001024. doi: 10.1128/jb.00010-24. Epub 2024 Jul 24.
6
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14674-9. doi: 10.1073/pnas.97.26.14674.
9
Regulatory Evolution of the Ancestral Gene in Salmonella enterica Serovar Typhimurium.
J Bacteriol. 2022 May 17;204(5):e0058521. doi: 10.1128/jb.00585-21. Epub 2022 Apr 11.

引用本文的文献

1
Gene knockout studies of Dps protein reveals a novel role for DNA-binding protein in maintaining outer membrane permeability.
World J Microbiol Biotechnol. 2025 Feb 13;41(2):70. doi: 10.1007/s11274-025-04269-y.
2
CRP improves the survival and competitive fitness of Typhimurium under starvation by controlling the cellular maintenance rate.
J Bacteriol. 2024 Aug 22;206(8):e0001024. doi: 10.1128/jb.00010-24. Epub 2024 Jul 24.

本文引用的文献

1
Master regulator NtrC controls the utilization of alternative nitrogen sources in Pseudomonas stutzeri A1501.
World J Microbiol Biotechnol. 2021 Sep 15;37(10):177. doi: 10.1007/s11274-021-03144-w.
2
Matrix inhibition by Salmonella excludes uropathogenic E. coli from biofilm.
FEMS Microbiol Ecol. 2020 Dec 30;97(1). doi: 10.1093/femsec/fiaa214.
3
Wide lag time distributions break a trade-off between reproduction and survival in bacteria.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18729-18736. doi: 10.1073/pnas.2003331117. Epub 2020 Jul 15.
5
Microbial lag phase can be indicative of, or independent from, cellular stress.
Sci Rep. 2020 Apr 3;10(1):5948. doi: 10.1038/s41598-020-62552-4.
6
Death Rate of E. coli during Starvation Is Set by Maintenance Cost and Biomass Recycling.
Cell Syst. 2019 Jul 24;9(1):64-73.e3. doi: 10.1016/j.cels.2019.06.003. Epub 2019 Jul 17.
7
Extreme slow growth as alternative strategy to survive deep starvation in bacteria.
Nat Commun. 2019 Feb 21;10(1):890. doi: 10.1038/s41467-019-08719-8.
8
Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division.
J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00697-18. Print 2019 Apr 1.
9
Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli.
J Bacteriol. 2019 Jan 11;201(3). doi: 10.1128/JB.00622-18. Print 2019 Feb 1.
10
Microbial wars: Competition in ecological niches and within the microbiome.
Microb Cell. 2018 May 7;5(5):215-219. doi: 10.15698/mic2018.05.628.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验