Datta R, Russell D R, Tang I, Clayson T, Suttle L G, Chittenden J P, Lebedev S V, Hare J D
Plasma Science & Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
Rev Sci Instrum. 2022 Oct 1;93(10):103530. doi: 10.1063/5.0098823.
We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive ("b-dot") probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large (R > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach-Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of Z̄T, where Z̄ is the average ionization and T is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic (M ∼ 8), super-Alfvénic (M ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and Z̄T measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON.
我们提出了一种用于测量磁化的、超音速高能量密度等离子体中的时间分辨速度和离子声速的技术。我们将一个感应式(“b 点”)探头置于超音速脉冲功率驱动的等离子体流中,并测量由等离子体平流的磁场。由于磁雷诺数很大(R>10),等离子体流平流的磁场与负载处的电流成正比。这使我们能够根据负载处电流与探头处信号之间的延迟来估计流速随时间的变化。超音速流还会在探头周围产生一个流体动力学弓形激波,其结构取决于上游声马赫数。通过用马赫 - 曾德尔干涉仪对探头周围的激波进行成像,我们从激波马赫角确定上游马赫数,然后利用已知的上游速度来确定离子声速。我们利用声速来推断(Z̄T)的值,其中(Z̄)是平均电离度,(T)是电子温度。我们使用这种诊断方法来测量在喜鹊发生器(1.4 MA,250 ns)上的爆炸丝阵列烧蚀阶段产生的超音速((M\sim8))、超阿尔文((M\sim2))铝等离子体的时间分辨速度和声速。速度和(Z̄T)测量结果与文献中报道的光学汤普森散射测量结果以及 GORGON 中的三维电阻磁流体动力学模拟结果吻合良好。