Suppr超能文献

一个用于预测血液透析患者高钾血症的列线图:一项回顾性队列研究。

A nomogram to predict hyperkalemia in patients with hemodialysis: a retrospective cohort study.

机构信息

Lishui Municipal Central Hospital, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.

Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.

出版信息

BMC Nephrol. 2022 Nov 1;23(1):351. doi: 10.1186/s12882-022-02976-4.

Abstract

BACKGROUND

Hyperkalemia increases the risk of mortality and cardiovascular-related hospitalizations in patients with hemodialysis. Predictors of hyperkalemia are yet to be identified. We aimed at developing a nomogram able to predict hyperkalemia in patients with hemodialysis.

METHODS

We retrospectively screened patients with end-stage renal disease (ESRD) who had regularly received hemodialysis between Jan 1, 2017, and Aug 31, 2021, at Lishui municipal central hospital in China. The outcome for the nomogram was hyperkalemia, defined as serum potassium [K] ≥ 5.5 mmol/L. Data were collected from hemodialysis management system. Least Absolute Shrinkage Selection Operator (LASSO) analysis selected predictors preliminarily. A prediction model was constructed by multivariate logistic regression and presented as a nomogram. The performance of nomogram was measured by the receiver operating characteristic (ROC) curve, calibration diagram, and decision curve analysis (DCA). This model was validated internally by calculating the performance on a validation cohort.

RESULTS

A total of 401 patients were enrolled in this study. 159 (39.65%) patients were hyperkalemia. All participants were divided into development (n = 256) and validation (n = 145) cohorts randomly. Predictors in this nomogram were the number of hemodialysis session, blood urea nitrogen (BUN), serum sodium, serum calcium, serum phosphorus, and diabetes. The ROC curve of the training set was 0.82 (95%CI 0.77, 0.88). Similar ROC curve was achieved at validation set 0.81 (0.74, 0.88). The calibration curve demonstrated that the prediction outcome was correlated with the observed outcome.

CONCLUSION

This nomogram helps clinicians in predicting the risk of PEW and managing serum potassium in the patients with hemodialysis.

摘要

背景

高钾血症会增加血液透析患者的死亡率和心血管相关住院风险。目前尚未确定高钾血症的预测因素。本研究旨在开发一种列线图,以预测血液透析患者的高钾血症。

方法

我们回顾性筛选了 2017 年 1 月 1 日至 2021 年 8 月 31 日期间在中国丽水市中心医院定期接受血液透析的终末期肾病(ESRD)患者。列线图的结局为高钾血症,定义为血清钾[K]≥5.5mmol/L。数据来自血液透析管理系统。最小绝对收缩选择算子(LASSO)分析初步选择预测因子。通过多变量逻辑回归构建预测模型,并以列线图的形式呈现。通过受试者工作特征(ROC)曲线、校准图和决策曲线分析(DCA)来衡量列线图的性能。该模型通过计算验证队列的性能进行内部验证。

结果

本研究共纳入 401 例患者。其中 159 例(39.65%)患者发生高钾血症。所有参与者被随机分为开发(n=256)和验证(n=145)队列。该列线图的预测因子为血液透析次数、血尿素氮(BUN)、血清钠、血清钙、血清磷和糖尿病。训练集的 ROC 曲线为 0.82(95%CI 0.77, 0.88)。验证集的 ROC 曲线也相似,为 0.81(0.74, 0.88)。校准曲线表明预测结果与观察结果相关。

结论

该列线图有助于临床医生预测血液透析患者 PEW 的风险,并管理血清钾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验