Suppr超能文献

建立和验证早孕期妊娠期糖尿病的预测列线图:一项回顾性研究。

Establishment and validation of a predictive nomogram for gestational diabetes mellitus during early pregnancy term: A retrospective study.

机构信息

Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.

Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 24;14:1087994. doi: 10.3389/fendo.2023.1087994. eCollection 2023.

Abstract

OBJECTIVE

This study aims to develop and evaluate a predictive nomogram for early assessment risk factors of gestational diabetes mellitus (GDM) during early pregnancy term, so as to help early clinical management and intervention.

METHODS

A total of 824 pregnant women at Zhongnan Hospital of Wuhan University and Maternal and Child Health Hospital of Hubei Province from 1 February 2020 to 30 April 2020 were enrolled in a retrospective observational study and comprised the training dataset. Routine clinical and laboratory information was collected; we applied least absolute shrinkage and selection operator (LASSO) logistic regression and multivariate ROC risk analysis to determine significant predictors and establish the nomogram, and the early pregnancy files (gestational weeks 12-16, = 392) at the same hospital were collected as a validation dataset. We evaluated the nomogram the receiver operating characteristic (ROC) curve, C-index, calibration curve, and decision curve analysis (DCA).

RESULTS

We conducted LASSO analysis and multivariate regression to establish a GDM nomogram during the early pregnancy term; the five selected risk predictors are as follows: age, blood urea nitrogen (BUN), fibrinogen-to-albumin ratio (FAR), blood urea nitrogen-to-creatinine ratio (BUN/Cr), and blood urea nitrogen-to-albumin ratio (BUN/ALB). The calibration curve and DCA present optimal predictive power. DCA demonstrates that the nomogram could be applied clinically.

CONCLUSION

An effective nomogram that predicts GDM should be established in order to help clinical management and intervention at the early gestational stage.

摘要

目的

本研究旨在开发和评估一种预测妊娠早期妊娠期糖尿病(GDM)危险因素的预测列线图,以帮助早期临床管理和干预。

方法

本回顾性观察性研究纳入了 2020 年 2 月 1 日至 2020 年 4 月 30 日期间来自武汉大学中南医院和湖北省妇幼保健院的 824 名孕妇,作为训练数据集。收集了常规临床和实验室信息;应用最小绝对收缩和选择算子(LASSO)逻辑回归和多变量 ROC 风险分析确定显著预测因子并建立列线图,同时收集了同一医院的早孕档案(妊娠 12-16 周,n=392)作为验证数据集。我们评估了列线图的受试者工作特征(ROC)曲线、C 指数、校准曲线和决策曲线分析(DCA)。

结果

我们进行了 LASSO 分析和多变量回归,以建立妊娠早期的 GDM 列线图;五个选定的风险预测因子为年龄、血尿素氮(BUN)、纤维蛋白原与白蛋白比值(FAR)、血尿素氮与肌酐比值(BUN/Cr)和血尿素氮与白蛋白比值(BUN/ALB)。校准曲线和 DCA 呈现出最佳的预测能力。DCA 表明该列线图可应用于临床。

结论

应建立一种有效的预测 GDM 的列线图,以帮助早期妊娠的临床管理和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fd4/9998988/77d9228b1d2c/fendo-14-1087994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验