Suppr超能文献

一种新的预测危重病患者脓毒症相关急性肾损伤风险的列线图。

A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients.

机构信息

Department of Academic Affairs Office, YouJiang Medical University for Nationalities, Baise, China.

Department of ECG Diagnostics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.

出版信息

BMC Nephrol. 2021 May 10;22(1):173. doi: 10.1186/s12882-021-02379-x.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a prevalent and severe complication of sepsis contributing to high morbidity and mortality among critically ill patients. In this retrospective study, we develop a novel risk-predicted nomogram of sepsis associated-AKI (SA-AKI).

METHODS

A total of 2,871 patients from the Medical Information Mart for Intensive Care III (MIMIC-III) critical care database were randomly assigned to primary (2,012 patients) and validation (859 patients) cohorts. A risk-predicted nomogram for SA-AKI was developed through multivariate logistic regression analysis in the primary cohort while the nomogram was evaluated in the validation cohort. Nomogram discrimination and calibration were assessed using C-index and calibration curves in the primary and external validation cohorts. The clinical utility of the final nomogram was evaluated using decision curve analysis.

RESULTS

Risk predictors included in the prediction nomogram included length of stay in intensive care unit (LOS in ICU), baseline serum creatinine (SCr), glucose, anemia, and vasoactive drugs. Nomogram revealed moderate discrimination and calibration in estimating the risk of SA-AKI, with an unadjusted C-index of 0.752, 95 %Cl (0.730-0.774), and a bootstrap-corrected C index of 0.749. Application of the nomogram in the validation cohort provided moderate discrimination (C-index, 0.757 [95 % CI, 0.724-0.790]) and good calibration. Besides, the decision curve analysis (DCA) confirmed the clinical usefulness of the nomogram.

CONCLUSIONS

This study developed and validated an AKI risk prediction nomogram applied to critically ill patients with sepsis, which may help identify reasonable risk judgments and treatment strategies to a certain extent. Nevertheless, further verification using external data is essential to enhance its applicability in clinical practice.

摘要

背景

急性肾损伤(AKI)是脓毒症的一种常见且严重的并发症,导致重症患者的发病率和死亡率居高不下。在这项回顾性研究中,我们开发了一种新的脓毒症相关急性肾损伤(SA-AKI)风险预测列线图。

方法

从医疗信息监护 III (MIMIC-III)重症监护数据库中随机抽取 2871 名患者,分为主要(2012 名患者)和验证(859 名患者)队列。通过主要队列中的多变量逻辑回归分析,开发了一个用于 SA-AKI 的风险预测列线图,同时在验证队列中评估了该列线图。通过 C 指数和校准曲线,在主要和外部验证队列中评估了列线图的区分度和校准度。使用决策曲线分析评估最终列线图的临床实用性。

结果

纳入预测列线图的风险预测因素包括重症监护病房(ICU)住院时间(LOS)、基线血清肌酐(SCr)、血糖、贫血和血管活性药物。列线图在估计 SA-AKI 风险方面具有中等的区分度和校准度,未调整的 C 指数为 0.752,95%CI(0.730-0.774), bootstrap 校正后的 C 指数为 0.749。在验证队列中应用该列线图,具有中等的区分度(C 指数,0.757 [95%CI,0.724-0.790])和良好的校准度。此外,决策曲线分析(DCA)证实了该列线图的临床实用性。

结论

本研究开发并验证了一种适用于脓毒症重症患者的 AKI 风险预测列线图,该列线图可帮助识别合理的风险判断和治疗策略。然而,使用外部数据进行进一步验证对于提高其在临床实践中的适用性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca23/8111773/1667ec26ea40/12882_2021_2379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验