文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结直肠癌中的瓦博格效应:在肿瘤微环境中的新兴作用及其治疗意义。

Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications.

机构信息

Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.

Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.

出版信息

J Hematol Oncol. 2022 Nov 1;15(1):160. doi: 10.1186/s13045-022-01358-5.


DOI:10.1186/s13045-022-01358-5
PMID:36319992
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9628128/
Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.

摘要

结直肠癌(CRC)是全球第三大常见癌症,也是癌症相关死亡的第二大主要原因。无数 CRC 患者经历疾病进展。作为癌症的一个标志,瓦博格效应促进癌症转移并重塑肿瘤微环境,包括促进血管生成、免疫抑制、癌相关成纤维细胞形成和耐药性。靶向瓦博格代谢将是治疗 CRC 的一种有前途的方法。在这篇综述中,我们总结了瓦博格效应在肿瘤微环境中的作用信息,以阐明 CRC 中瓦博格效应的调控机制,并确定新的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/5aee88604f5d/13045_2022_1358_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/902ba59f6415/13045_2022_1358_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/46649bea62c6/13045_2022_1358_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/a842210f6787/13045_2022_1358_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/5aee88604f5d/13045_2022_1358_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/902ba59f6415/13045_2022_1358_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/46649bea62c6/13045_2022_1358_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/a842210f6787/13045_2022_1358_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab8/9628128/5aee88604f5d/13045_2022_1358_Fig4_HTML.jpg

相似文献

[1]
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications.

J Hematol Oncol. 2022-11-1

[2]
The Colorectal Cancer Microenvironment: Strategies for Studying the Role of Cancer-Associated Fibroblasts.

Methods Mol Biol. 2018

[3]
Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer.

J Transl Med. 2022-7-6

[4]
Interleukin 33/ST2 Axis Components Are Associated to Desmoplasia, a Metastasis-Related Factor in Colorectal Cancer.

Front Immunol. 2019-6-21

[5]
Cancer-associated fibroblasts promote colorectal cancer progression by secreting CLEC3B.

Cancer Biol Ther. 2019-3-20

[6]
Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells.

J Gastrointest Cancer. 2020-9

[7]
Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis.

BMC Cancer. 2021-8-19

[8]
Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy.

Cancer Commun (Lond). 2022-8

[9]
The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia.

Int J Mol Sci. 2021-2-4

[10]
Dysbiosis of human tumor microbiome and aberrant residence of in tumor-associated fibroblasts in young-onset colorectal cancer.

Front Immunol. 2022

引用本文的文献

[1]
Metabolic reprogramming and immunosenescence in colorectal cancer: mechanisms and therapeutic implications.

Front Cell Dev Biol. 2025-8-13

[2]
Construction of lactylation (LA) risk signature in prostate cancer based on 4D fast DIA L-lactated quantitative genomics.

J Transl Med. 2025-8-28

[3]
Prognostic value of red cell distribution width-to-albumin ratio in septic patients with malignancies: A retrospective cohort study based on the MIMIC-IV database.

Sci Prog. 2025

[4]
Dual role of lactate in human health and disease.

Front Physiol. 2025-8-1

[5]
Beyond borders: engineering organ-targeted immunotherapies to overcome site-specific barriers in cancer.

Drug Deliv Transl Res. 2025-8-11

[6]
Mitochondrial metabolism and cancer therapeutic innovation.

Signal Transduct Target Ther. 2025-8-4

[7]
Clinical application prospects of traditional Chinese medicine as adjuvant therapy for metabolic reprogramming in colorectal cancer.

Front Immunol. 2025-7-15

[8]
Duodenal Adenocarcinoma Is Characterized by Acidity, High Infiltration of Macrophage, and Activated Linc01559-GRSF1 Axis.

Biomedicines. 2025-6-30

[9]
ULK2 promotes migration and invasion of colorectal cancer cells via MCT4-mediated lactate export.

Med Oncol. 2025-7-22

[10]
UBD-mediated glycolytic reprogramming promotes M2 macrophage polarization in ovarian cancer immune evasion.

J Cell Commun Signal. 2025-7-21

本文引用的文献

[1]
[Immune checkpoint inhibitors in the treatment of colorectal cancer: a review of clinical trials].

Zhonghua Wei Chang Wai Ke Za Zhi. 2022-3-25

[2]
A Comprehensive View on the Quercetin Impact on Colorectal Cancer.

Molecules. 2022-3-14

[3]
Lactylation-driven METTL3-mediated RNA mA modification promotes immunosuppression of tumor-infiltrating myeloid cells.

Mol Cell. 2022-5-5

[4]
Phase II study of dichloroacetate, an inhibitor of pyruvate dehydrogenase, in combination with chemoradiotherapy for unresected, locally advanced head and neck squamous cell carcinoma.

Invest New Drugs. 2022-6

[5]
Diaminobutoxy-substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells.

Mol Cancer Ther. 2022-5-4

[6]
Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials.

Pharmaceuticals (Basel). 2022-1-26

[7]
Interplay Between mA RNA Methylation and Regulation of Metabolism in Cancer.

Front Cell Dev Biol. 2022-2-3

[8]
The hallmarks of cancer metabolism: Still emerging.

Cell Metab. 2022-3-1

[9]
Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments.

Cancer Cell. 2022-2-14

[10]
Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A.

Clin Transl Med. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索