Suppr超能文献

从第一性原理和无监督机器学习揭示超浓电解质还原稳定性的起源。

Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning.

作者信息

Wang Feng, Cheng Jun

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

出版信息

Chem Sci. 2022 Sep 15;13(39):11570-11576. doi: 10.1039/d2sc04025e. eCollection 2022 Oct 12.

Abstract

Developing electrolytes with excellent electrochemical stability is critical for next-generation rechargeable batteries. Super-concentrated electrolytes (SCEs) have attracted great interest due to their high electrochemical performances and stability. Previous studies have revealed changes in solvation structures and shifts in lowest unoccupied molecular orbitals from solvents to anions, promoting the formation of an anion-derived solid-electrolyte-interphase (SEI) in SCE. However, a direct connection at the atomic level to electrochemical properties is still missing, hindering the rational optimization of electrolytes. Herein, we combine molecular dynamics with the free energy calculation method to compute redox potentials of propylene carbonate electrolytes at a range of LiTFSI concentrations, and moreover employ an unsupervised machine learning model with a local structure descriptor to establish the structure-property relations. Our calculation indicates that the network of TFSI in SCE not only helps stabilize the added electron and renders the anion more prone to reductive decomposition, but also impedes the solvation of F and favors LiF precipitation, together leading to effective formation of protective SEI layers. Our work provides new insights into the solvation structures and electrochemistry of concentrated electrolytes which are essential to electrolyte design in batteries.

摘要

开发具有优异电化学稳定性的电解质对于下一代可充电电池至关重要。超浓电解质(SCE)因其高电化学性能和稳定性而备受关注。先前的研究揭示了溶剂化结构的变化以及最低未占据分子轨道从溶剂到阴离子的转移,促进了SCE中阴离子衍生的固体电解质界面(SEI)的形成。然而,在原子水平上与电化学性质的直接联系仍然缺失,这阻碍了电解质的合理优化。在此,我们将分子动力学与自由能计算方法相结合,以计算一系列LiTFSI浓度下碳酸丙烯酯电解质的氧化还原电位,此外还采用具有局部结构描述符的无监督机器学习模型来建立结构-性质关系。我们的计算表明,SCE中TFSI的网络不仅有助于稳定添加的电子并使阴离子更易于发生还原分解,而且还阻碍了F的溶剂化并有利于LiF沉淀,共同导致有效形成保护性SEI层。我们的工作为浓电解质的溶剂化结构和电化学提供了新的见解,这对于电池中的电解质设计至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验