Setiyanto Henry, Purwaningsih Dwi Ratih, Saraswaty Vienna, Mufti Nandang, Zulfikar Muhammad Ali
Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
Research Center for Environmental and Clean Technology, Research and Innovation Agency Republic of Indonesia Kawasan Puspiptek Building 820 Tangerang Banten Indonesia.
RSC Adv. 2022 Oct 17;12(45):29554-29561. doi: 10.1039/d2ra05196f. eCollection 2022 Oct 11.
Electrochemical sensors based on ion-imprinting polymers have emerged as an effective analytical tool for heavy metal tracking. This study describes a simple and facile technique for manufacturing a highly selective and sensitive electrode using an ion imprinting polymer on a bismuth-modified carbon paste electrode. The developed sensor applied aniline as a functional monomer and was used for tracking Ni(ii) ions. The proposed sensor was thoroughly characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse striping anodic voltammetry. The analytical evaluation showed that the proposed sensor has a linear dynamic range ( = 0.999) for the Ni(ii) concentration range of 0.01 to 1 μM and a limit of detection value of 0.00482 μM. The proposed sensor showed excellent performance when tested for tracking Ni(ii) ions in the presence of interfering ions (Cd(ii), Co(ii), Cu(ii), and Zn(ii) ions) at a 1000-fold higher concentration. When the proposed sensor was tested for tracking Ni(ii) concentration in an actual river sample, our modified sensor showed similar results compared to the atomic absorption spectroscopy evaluation ( > 0.05, = 3). In summary, our proposed sensor is promising for monitoring Ni(ii) ions in the aquatic environment.
基于离子印迹聚合物的电化学传感器已成为重金属追踪的一种有效分析工具。本研究描述了一种简单易行的技术,即在铋修饰的碳糊电极上使用离子印迹聚合物制造高选择性和高灵敏度电极。所开发的传感器以苯胺作为功能单体,用于追踪Ni(ii)离子。通过扫描电子显微镜、循环伏安法和差分脉冲溶出阳极伏安法对所提出的传感器进行了全面表征。分析评估表明,所提出的传感器在0.01至1 μM的Ni(ii)浓度范围内具有线性动态范围( = 0.999),检测限为0.00482 μM。在所提出的传感器用于在存在浓度高1000倍的干扰离子(Cd(ii)、Co(ii)、Cu(ii)和Zn(ii)离子)的情况下追踪Ni(ii)离子时,表现出优异的性能。当所提出的传感器用于追踪实际河流样品中的Ni(ii)浓度时,与原子吸收光谱评估相比,我们的改进型传感器显示出相似的结果( > 0.05, = 3)。总之,我们所提出的传感器在监测水环境中的Ni(ii)离子方面具有前景。