Suppr超能文献

定量构效关系模型揭示了新型的环磷腺苷效应元件结合蛋白(EPAC)选择性变构调节剂。

QSAR models reveal new EPAC-selective allosteric modulators.

作者信息

Mohamed Hebatallah, Shao Hongzhao, Akimoto Madoka, Darveau Patrick, MacKinnon Marc R, Magolan Jakob, Melacini Giuseppe

机构信息

Department of Chemistry and Chemical Biology, McMaster University, Hamilton Ontario L8S 4L8 Canada

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Ontario L8S 4L8 Canada.

出版信息

RSC Chem Biol. 2022 Aug 3;3(10):1230-1239. doi: 10.1039/d2cb00106c. eCollection 2022 Oct 5.

Abstract

Exchange proteins directly activated by cAMP (EPAC) are guanine nucleotide exchange factors for the small GTPases, Rap1 and Rap2. They regulate several physiological functions and mitigation of their activity has been suggested as a possible treatment for multiple diseases such as cardiomyopathy, diabetes, chronic pain, and cancer. Several EPAC-specific modulators have been developed, however studies that quantify their structure-activity relationships are still lacking. Here we propose a quantitative structure-activity relationship (QSAR) model for a series of EPAC-specific compounds. The model demonstrated high reproducibility and predictivity and the predictive ability of the model was tested against a series of compounds that were unknown to the model. The compound with the highest predicted affinity was validated experimentally through fluorescence-based competition assays and NMR experiments revealed its mode of binding and mechanism of action as a partial agonist. The proposed QSAR model can, therefore, serve as an effective screening tool to identify promising EPAC-selective drug leads with enhanced potency.

摘要

环磷酸腺苷直接激活的交换蛋白(EPAC)是小GTP酶Rap1和Rap2的鸟嘌呤核苷酸交换因子。它们调节多种生理功能,抑制其活性被认为可能是治疗多种疾病的方法,如心肌病、糖尿病、慢性疼痛和癌症。已经开发了几种EPAC特异性调节剂,然而,仍缺乏量化其构效关系的研究。在此,我们提出了一系列EPAC特异性化合物的定量构效关系(QSAR)模型。该模型具有高重现性和预测性,并且针对一系列模型未知的化合物测试了该模型的预测能力。通过基于荧光的竞争试验对预测亲和力最高的化合物进行了实验验证,核磁共振实验揭示了其结合模式和作为部分激动剂的作用机制。因此,所提出的QSAR模型可以作为一种有效的筛选工具,以识别具有增强效力的有前景的EPAC选择性药物先导物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd2/9533425/3cf38d77608d/d2cb00106c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验