Suppr超能文献

无边界定量构效关系。

QSAR without borders.

机构信息

UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Chem Soc Rev. 2020 Jun 7;49(11):3525-3564. doi: 10.1039/d0cs00098a. Epub 2020 May 1.

Abstract

Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.

摘要

化学生物活性和物理性质的预测一直是统计方法,最近更是机器学习和人工智能方法在化学科学中最重要的应用之一。这个研究领域,通常被称为定量构效关系(QSAR)建模,在过去的 55 年以上的时间里,已经开发出了许多重要的算法,并在物理有机化学和药物化学中找到了广泛的应用。本文综述了 QSAR 建模的最新技术进展,但也强调了在传统 QSAR 边界之外的广泛研究领域(包括合成规划、纳米技术、材料科学、生物材料和临床信息学)中开发的算法、建模方法和验证实践的适用性。随着现代研究方法生成的数据量迅速增加,QSAR 领域中公认的稳健数据驱动建模方法的知识对于在化学研究内外工作的科学家来说可能变得至关重要。我们希望,强调 QSAR 建模的可推广部分的这一贡献将有助于应对这一挑战。

相似文献

1
QSAR without borders.
Chem Soc Rev. 2020 Jun 7;49(11):3525-3564. doi: 10.1039/d0cs00098a. Epub 2020 May 1.
2
QSAR modeling: where have you been? Where are you going to?
J Med Chem. 2014 Jun 26;57(12):4977-5010. doi: 10.1021/jm4004285. Epub 2014 Jan 6.
3
Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
Curr Pharm Des. 2007;13(34):3494-504. doi: 10.2174/138161207782794257.
4
Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR).
Expert Opin Drug Discov. 2018 Dec;13(12):1075-1089. doi: 10.1080/17460441.2018.1542428. Epub 2018 Nov 3.
5
4D- quantitative structure-activity relationship modeling: making a comeback.
Expert Opin Drug Discov. 2019 Dec;14(12):1227-1235. doi: 10.1080/17460441.2019.1664467. Epub 2019 Sep 12.
6
Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules.
Curr Drug Discov Technol. 2007 Oct;4(3):141-9. doi: 10.2174/157016307782109706.
8
Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR.
Nat Rev Drug Discov. 2024 Feb;23(2):141-155. doi: 10.1038/s41573-023-00832-0. Epub 2023 Dec 8.
9
The advancement of multidimensional QSAR for novel drug discovery - where are we headed?
Expert Opin Drug Discov. 2017 Aug;12(8):769-784. doi: 10.1080/17460441.2017.1336157. Epub 2017 Jun 8.
10
QSAR: What Else?
Methods Mol Biol. 2018;1800:79-105. doi: 10.1007/978-1-4939-7899-1_3.

引用本文的文献

1
In Silico ADME Methods Used in the Evaluation of Natural Products.
Pharmaceutics. 2025 Jul 31;17(8):1002. doi: 10.3390/pharmaceutics17081002.
2
Informatics-Based Design of Virtual Libraries of Polymer Nano-Composites.
Int J Mol Sci. 2025 Jul 30;26(15):7344. doi: 10.3390/ijms26157344.
3
Molecular Rotors as Reactivity Probes: Predicting Electrophilicity from the Speed of Rotation.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202510556. doi: 10.1002/anie.202510556. Epub 2025 Jul 29.
5
Evaluating the Vascular Risk of PFCs: An Integrated XGBoost-Driven Structure-Activity Prediction and Experimental Validation Study.
Environ Health (Wash). 2025 Apr 29;3(7):795-806. doi: 10.1021/envhealth.5c00014. eCollection 2025 Jul 18.
6
The topology of molecular representations and its influence on machine learning performance.
J Cheminform. 2025 Jul 21;17(1):109. doi: 10.1186/s13321-025-01045-w.
7
Catalyst: Systems chemistry links reactions to molecular function.
Chem. 2024 Aug 8;10(8):2333-2336. doi: 10.1016/j.chempr.2024.06.009. Epub 2024 Jul 30.
10
Generative Deep Learning for de Novo Drug Design─A Chemical Space Odyssey.
J Chem Inf Model. 2025 Jul 28;65(14):7352-7372. doi: 10.1021/acs.jcim.5c00641. Epub 2025 Jul 9.

本文引用的文献

1
Regression Algorithms in Hyperspectral Data Analysis for Meat Quality Detection and Evaluation.
Compr Rev Food Sci Food Saf. 2016 May;15(3):529-541. doi: 10.1111/1541-4337.12191. Epub 2016 Mar 1.
2
ChemOS: Orchestrating autonomous experimentation.
Sci Robot. 2018 Jun 20;3(19). doi: 10.1126/scirobotics.aat5559.
3
DeepCOP: deep learning-based approach to predict gene regulating effects of small molecules.
Bioinformatics. 2020 Feb 1;36(3):813-818. doi: 10.1093/bioinformatics/btz645.
5
Cheminformatics-driven discovery of polymeric micelle formulations for poorly soluble drugs.
Sci Adv. 2019 Jun 26;5(6):eaav9784. doi: 10.1126/sciadv.aav9784. eCollection 2019 Jun.
6
Deep Learning in Chemistry.
J Chem Inf Model. 2019 Jun 24;59(6):2545-2559. doi: 10.1021/acs.jcim.9b00266. Epub 2019 Jun 13.
7
Interpretation of QSAR Models by Coloring Atoms According to Changes in Predicted Activity: How Robust Is It?
J Chem Inf Model. 2019 Apr 22;59(4):1324-1337. doi: 10.1021/acs.jcim.8b00825. Epub 2019 Mar 4.
8
Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space.
J Chem Inf Model. 2019 Mar 25;59(3):1062-1072. doi: 10.1021/acs.jcim.8b00685. Epub 2019 Jan 23.
9
Using Machine Learning To Predict Suitable Conditions for Organic Reactions.
ACS Cent Sci. 2018 Nov 28;4(11):1465-1476. doi: 10.1021/acscentsci.8b00357. Epub 2018 Nov 16.
10
Closed-loop discovery platform integration is needed for artificial intelligence to make an impact in drug discovery.
Expert Opin Drug Discov. 2019 Jan;14(1):1-4. doi: 10.1080/17460441.2019.1546690. Epub 2018 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验