Suppr超能文献

扩散介导的出芽机制及其对病毒复制和感染的影响。

Mechanics of diffusion-mediated budding and implications for virus replication and infection.

机构信息

Mechanical Engineering Department, School of Biomedical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC Canada V6T1Z4.

出版信息

J R Soc Interface. 2022 Nov;19(196):20220525. doi: 10.1098/rsif.2022.0525. Epub 2022 Nov 2.

Abstract

Budding allows virus replication and macromolecular secretion in cells through the formation of a membrane protrusion (bud) that evolves into an envelope. The largest energetic barrier to bud formation is membrane deflection and is trespassed primarily thanks to nucleocapsid-membrane adhesion. Transmembrane proteins (TPs), which later form the virus ligands, are the main promotors of adhesion and can accommodate membrane bending thanks to an induced spontaneous curvature. Adhesive TPs must diffuse across the membrane from remote regions to gather on the bud surface, thus, diffusivity controls the kinetics. This paper proposes a simple model to describe diffusion-mediated budding unravelling important size limitations and size-dependent kinetics. The predicted optimal virion radius, giving the fastest budding, is validated against experiments for coronavirus, HIV, flu and hepatitis. Assuming exponential replication of virions and hereditary size, the model can predict the size distribution of a virus population. This is verified against experiments for SARS-CoV-2. All the above comparisons rely on the premise that budding poses the tightest size constraint. This is true in most cases, as demonstrated in this paper, where the proposed model is extended to describe virus infection via receptor- and clathrin-mediated endocytosis, and via membrane fusion.

摘要

芽殖通过形成一个膜突起(芽)来允许病毒在细胞中复制和大分子分泌,该突起演变成包膜。芽殖形成的最大能量障碍是膜的弯曲,主要得益于核衣壳-膜的粘附。随后形成病毒配体的跨膜蛋白(TP)是粘附的主要促进剂,并且由于诱导的自发曲率,可以容纳膜弯曲。粘附性的 TPs 必须从远程区域扩散穿过膜,聚集在芽的表面,因此,扩散性控制着动力学。本文提出了一个简单的模型来描述扩散介导的芽殖,揭示了重要的尺寸限制和尺寸相关的动力学。预测的最佳病毒半径,给出最快的芽殖,针对冠状病毒、HIV、流感和肝炎的实验进行了验证。假设病毒粒子的指数复制和遗传大小,该模型可以预测病毒群体的大小分布。针对 SARS-CoV-2 的实验进行了验证。所有上述比较都基于芽殖构成最严格的尺寸约束的前提。在大多数情况下都是如此,正如本文所证明的那样,所提出的模型扩展到描述通过受体和网格蛋白介导的胞吞作用以及通过膜融合进行的病毒感染。

相似文献

1
Mechanics of diffusion-mediated budding and implications for virus replication and infection.
J R Soc Interface. 2022 Nov;19(196):20220525. doi: 10.1098/rsif.2022.0525. Epub 2022 Nov 2.
2
Properties of Coronavirus and SARS-CoV-2.
Malays J Pathol. 2020 Apr;42(1):3-11.
3
SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography.
Nat Commun. 2020 Nov 18;11(1):5885. doi: 10.1038/s41467-020-19619-7.
4
The E3 Ubiquitin Ligase RNF5 Facilitates SARS-CoV-2 Membrane Protein-Mediated Virion Release.
mBio. 2021 Feb 22;13(1):e0316821. doi: 10.1128/mbio.03168-21. Epub 2022 Feb 1.
5
A statistical-thermodynamic model of viral budding.
Biophys J. 2004 Apr;86(4):2037-48. doi: 10.1016/S0006-3495(04)74265-4.
6
The Interferon-Inducible Protein Tetherin Inhibits Hepatitis B Virus Virion Secretion.
J Virol. 2015 Sep;89(18):9200-12. doi: 10.1128/JVI.00933-15. Epub 2015 Jun 24.
8
Ebola Virus Requires Phosphatidylserine Scrambling Activity for Efficient Budding and Optimal Infectivity.
J Virol. 2021 Sep 27;95(20):e0116521. doi: 10.1128/JVI.01165-21. Epub 2021 Jul 28.
9
Design principles for robust vesiculation in clathrin-mediated endocytosis.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1118-E1127. doi: 10.1073/pnas.1617705114. Epub 2017 Jan 26.
10
Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding.
Biophys J. 2018 Feb 6;114(3):619-630. doi: 10.1016/j.bpj.2017.11.3782.

引用本文的文献

1
Morphological trapping of neurotransmitters in synaptic clefts: A new dimension in neural plasticity.
Biophys J. 2025 Apr 1;124(7):1035-1037. doi: 10.1016/j.bpj.2025.02.026. Epub 2025 Feb 28.
2
Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes.
ACS Nano. 2024 Jun 18;18(24):15545-15556. doi: 10.1021/acsnano.4c00277. Epub 2024 Jun 5.
3
Effective cell membrane tension protects red blood cells against malaria invasion.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011694. doi: 10.1371/journal.pcbi.1011694. eCollection 2023 Dec.
4
COVID-19 Biogenesis and Intracellular Transport.
Int J Mol Sci. 2023 Feb 24;24(5):4523. doi: 10.3390/ijms24054523.

本文引用的文献

1
The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis.
Soft Matter. 2022 May 11;18(18):3531-3545. doi: 10.1039/d1sm01710a.
3
Molecular Architecture of the SARS-CoV-2 Virus.
Cell. 2020 Oct 29;183(3):730-738.e13. doi: 10.1016/j.cell.2020.09.018. Epub 2020 Sep 6.
4
Structures and distributions of SARS-CoV-2 spike proteins on intact virions.
Nature. 2020 Dec;588(7838):498-502. doi: 10.1038/s41586-020-2665-2. Epub 2020 Aug 17.
5
SARS-CoV-2 (COVID-19) by the numbers.
Elife. 2020 Apr 2;9:e57309. doi: 10.7554/eLife.57309.
6
Formation and size distribution of self-assembled vesicles.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2910-2915. doi: 10.1073/pnas.1702065114. Epub 2017 Mar 6.
7
Kinetics of receptor-mediated endocytosis of elastic nanoparticles.
Nanoscale. 2017 Jan 7;9(1):454-463. doi: 10.1039/c6nr07179a. Epub 2016 Dec 9.
8
Nothing to sneeze at: a dynamic and integrative computational model of an influenza A virion.
Structure. 2015 Mar 3;23(3):584-597. doi: 10.1016/j.str.2014.12.019. Epub 2015 Feb 19.
10
Protein-induced membrane curvature alters local membrane tension.
Biophys J. 2014 Aug 5;107(3):751-762. doi: 10.1016/j.bpj.2014.06.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验