Qu Weiye, Yuan Haiyang, Ren Zhouhong, Qi Jizhen, Xu Dongrun, Chen Junxiao, Chen Liwei, Yang Huagui, Ma Zhen, Liu Xi, Wang Haifeng, Tang Xingfu
Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Angew Chem Int Ed Engl. 2022 Dec 23;61(52):e202212703. doi: 10.1002/anie.202212703. Epub 2022 Nov 28.
Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V -W /TiO is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH or O ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V -Mo /TiO catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.
有效的吸附和快速的表面反应是催化中高效活性位点的关键要求,但同时最大化这两种功能仍然具有挑战性。我们通过设计一系列具有可调电子相互作用的原子对催化位点来解决这个问题。作为一个案例研究,选择了在V-W/TiO₂上发生的NO选择性还原反应。实验和理论结果表明,成对原子之间存在的协同电子效应使费米能级周围的高能自旋电荷富集,与单独的单个V或W原子相比,同时使反应物(NH₃或O₂)的吸附更有效,随后的表面反应更快,因此反应速率更高。这种策略使我们能够合理设计一种具有优化的钒(IV)-钼(V)电子相互作用的高性能V-Mo/TiO₂催化剂,其具有比商业或报道的催化剂显著更高的优异活性。