Suppr超能文献

使用深度学习准确预测导管内乳头状黏液性肿瘤的组织学分级

Accurate prediction of histological grading of intraductal papillary mucinous neoplasia using deep learning.

作者信息

Schulz Dominik, Heilmaier Markus, Phillip Veit, Treiber Matthias, Mayr Ulrich, Lahmer Tobias, Mueller Julius, Demir Ihsan Ekin, Friess Helmut, Reichert Maximilian, Schmid Roland M, Abdelhafez Mohamed

机构信息

Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany.

出版信息

Endoscopy. 2023 May;55(5):415-422. doi: 10.1055/a-1971-1274. Epub 2022 Nov 2.

Abstract

BACKGROUND

Risk stratification and recommendation for surgery for intraductal papillary mucinous neoplasm (IPMN) are currently based on consensus guidelines. Risk stratification from presurgery histology is only potentially decisive owing to the low sensitivity of fine-needle aspiration. In this study, we developed and validated a deep learning-based method to distinguish between IPMN with low grade dysplasia and IPMN with high grade dysplasia/invasive carcinoma using endoscopic ultrasound (EUS) images.

METHODS

For model training, we acquired a total of 3355 EUS images from 43 patients who underwent pancreatectomy from March 2015 to August 2021. All patients had histologically proven IPMN. We used transfer learning to fine-tune a convolutional neural network and to classify "low grade IPMN" from "high grade IPMN/invasive carcinoma." Our test set consisted of 1823 images from 27 patients, recruiting 11 patients retrospectively, 7 patients prospectively, and 9 patients externally. We compared our results with the prediction based on international consensus guidelines.

RESULTS

Our approach could classify low grade from high grade/invasive carcinoma in the test set with an accuracy of 99.6 % (95 %CI 99.5 %-99.9 %). Our deep learning model achieved superior accuracy in prediction of the histological outcome compared with any individual guideline, which have accuracies between 51.8 % (95 %CI 31.9 %-71.3 %) and 70.4 % (95 %CI 49.8-86.2).

CONCLUSION

This pilot study demonstrated that deep learning in IPMN-EUS images can predict the histological outcome with high accuracy.

摘要

背景

导管内乳头状黏液性肿瘤(IPMN)的风险分层及手术建议目前基于共识指南。由于细针穿刺的敏感性较低,术前组织学的风险分层仅具有潜在的决定性作用。在本研究中,我们开发并验证了一种基于深度学习的方法,用于使用内镜超声(EUS)图像区分低级别发育异常的IPMN和高级别发育异常/浸润性癌的IPMN。

方法

为进行模型训练,我们从2015年3月至2021年8月接受胰腺切除术的43例患者中总共获取了3355张EUS图像。所有患者均经组织学证实为IPMN。我们使用迁移学习对卷积神经网络进行微调,以将“低级别IPMN”与“高级别IPMN/浸润性癌”进行分类。我们的测试集由来自27例患者的1823张图像组成,其中11例患者为回顾性招募,7例患者为前瞻性招募,9例患者为外部招募。我们将我们的结果与基于国际共识指南的预测进行了比较。

结果

我们的方法在测试集中能够以99.6%(95%CI 99.5%-99.9%)的准确率将低级别与高级别/浸润性癌进行分类。与任何单个指南相比,我们的深度学习模型在预测组织学结果方面具有更高的准确率,单个指南预测准确率在51.8%(CI 95% 31.9%-71.3%)至70.4%(95%CI 49.8-86.2)之间。

结论

这项初步研究表明,IPMN-EUS图像中的深度学习能够高精度地预测组织学结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验