Suppr超能文献

自噬相关标志物 p62、LC3 和 Beclin1 在卵巢癌中的预后相关性。

Prognostic relevance of autophagy-related markers p62, LC3, and Beclin1 in ovarian cancer.

机构信息

Ljubiša Jovanović, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade,

出版信息

Croat Med J. 2022 Oct 31;63(5):453-460. doi: 10.3325/cmj.2022.63.453.

Abstract

AIM

To analyze the expression of autophagy markers p62, LC3, and Beclin1 in ovarian cancer tissue and evaluate the prognostic potential of these markers.

METHODS

The study enrolled 328 patients: 122 with epithelial ovarian carcinoma, 42 with atypical proliferative tumor, and 164 with benign epithelial ovarian tumor. The expression of p62, LC3, and Beclin1 was analyzed in central and invasive tumor segments with immunohistochemistry combined with tissue microarray. The expression levels of the analyzed markers were correlated with relevant histopathology parameters.

RESULTS

The expression of all analyzed markers was most remarkable in epithelial ovarian carcinoma. There was a strong positive correlation between the expressions of p62 and LC3, while these two markers negatively correlated with Beclin1. High-grade serous carcinoma had higher p62 and LC3 levels, and lower Beclin1 levels than other tumor types. This expression profile was also observed in more advanced tumor stages.

CONCLUSION

Prominent p62 and LC3 expression in combination with weak Beclin1 expression in high-grade serous carcinoma indicates potential for the application of autophagy inhibitors in patients with this tumor subtype.

摘要

目的

分析自噬标志物 p62、LC3 和 Beclin1 在卵巢癌组织中的表达,并评估这些标志物的预后潜力。

方法

该研究纳入了 328 名患者:122 名上皮性卵巢癌患者、42 名非典型增生性肿瘤患者和 164 名良性上皮性卵巢肿瘤患者。采用免疫组织化学结合组织微阵列分析中央和侵袭性肿瘤段中 p62、LC3 和 Beclin1 的表达。分析标记物的表达水平与相关组织病理学参数相关。

结果

所有分析标记物的表达在上皮性卵巢癌中最为显著。p62 和 LC3 的表达之间存在强烈的正相关,而这两个标记物与 Beclin1 呈负相关。高级别浆液性癌的 p62 和 LC3 水平较高,Beclin1 水平较低,与其他肿瘤类型相比。这种表达模式也在更晚期的肿瘤阶段观察到。

结论

在高级别浆液性癌中,p62 和 LC3 的表达明显增强,Beclin1 的表达较弱,表明自噬抑制剂在该肿瘤亚型患者中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8723/9648085/e862ea68b6ee/CroatMedJ_63_0453-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验