Department of Psychology, University of Amsterdam.
Psychol Methods. 2024 Feb;29(1):48-64. doi: 10.1037/met0000528. Epub 2022 Nov 3.
Exploratory factor analysis (EFA) is one of the most popular statistical models in psychological science. A key problem in EFA is to estimate the number of factors. In this article, we present a new method for estimating the number of factors based on minimizing the out-of-sample prediction error of candidate factor models. We show in an extensive simulation study that our method slightly outperforms existing methods, including parallel analysis, Bayesian information criterion (BIC), Akaike information criterion (AIC), root mean squared error of approximation (RMSEA), and exploratory graph analysis. In addition, we show that, among the best performing methods, our method is the one that is most robust across different specifications of the true factor model. We provide an implementation of our method in the R-package . (PsycInfo Database Record (c) 2024 APA, all rights reserved).
探索性因素分析(EFA)是心理学中最流行的统计模型之一。EFA 的一个关键问题是估计因素的数量。在本文中,我们提出了一种新的方法,基于最小化候选因素模型的样本外预测误差来估计因素的数量。我们在广泛的模拟研究中表明,我们的方法略优于现有的方法,包括平行分析、贝叶斯信息准则(BIC)、赤池信息量准则(AIC)、逼近均方根误差(RMSEA)和探索性图分析。此外,我们表明,在表现最好的方法中,我们的方法在真实因素模型的不同规范下是最稳健的。我们在 R 包 中提供了我们方法的实现。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。