Suppr超能文献

在因子分析混合模型中,CHull 可以替代 AIC 和 BIC。

CHull as an alternative to AIC and BIC in the context of mixtures of factor analyzers.

机构信息

KU Leuven, Leuven, Belgium.

出版信息

Behav Res Methods. 2013 Sep;45(3):782-91. doi: 10.3758/s13428-012-0293-y.

Abstract

Mixture analysis is commonly used for clustering objects on the basis of multivariate data. When the data contain a large number of variables, regular mixture analysis may become problematic, because a large number of parameters need to be estimated for each cluster. To tackle this problem, the mixtures-of-factor-analyzers (MFA) model was proposed, which combines clustering with exploratory factor analysis. MFA model selection is rather intricate, as both the number of clusters and the number of underlying factors have to be determined. To this end, the Akaike (AIC) and Bayesian (BIC) information criteria are often used. AIC and BIC try to identify a model that optimally balances model fit and model complexity. In this article, the CHull (Ceulemans & Kiers, 2006) method, which also balances model fit and complexity, is presented as an interesting alternative model selection strategy for MFA. In an extensive simulation study, the performances of AIC, BIC, and CHull were compared. AIC performs poorly and systematically selects overly complex models, whereas BIC performs slightly better than CHull when considering the best model only. However, when taking model selection uncertainty into account by looking at the first three models retained, CHull outperforms BIC. This especially holds in more complex, and thus more realistic, situations (e.g., more clusters, factors, noise in the data, and overlap among clusters).

摘要

混合分析通常用于根据多元数据对对象进行聚类。当数据包含大量变量时,常规的混合分析可能会变得有问题,因为需要为每个聚类估计大量参数。为了解决这个问题,提出了混合因子分析器(MFA)模型,该模型将聚类与探索性因子分析相结合。MFA 模型选择相当复杂,因为必须确定聚类的数量和潜在因子的数量。为此,通常使用赤池信息量准则(AIC)和贝叶斯信息量准则(BIC)。AIC 和 BIC 试图识别一种能够最佳平衡模型拟合度和模型复杂度的模型。在本文中,介绍了 CHull(Ceulemans 和 Kiers,2006)方法,该方法也平衡了模型拟合度和复杂度,是 MFA 的一种有趣的替代模型选择策略。在广泛的模拟研究中,比较了 AIC、BIC 和 CHull 的性能。AIC 表现不佳,系统地选择了过于复杂的模型,而 BIC 仅考虑最佳模型时,表现略优于 CHull。然而,当通过查看保留的前三个模型来考虑模型选择不确定性时,CHull 优于 BIC。在更复杂的情况下(例如,更多的聚类、因子、数据中的噪声以及聚类之间的重叠),这一点尤其成立。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验