Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
Thermo Fisher Scientific, Bremen 28199, Germany.
Anal Chem. 2022 Nov 15;94(45):15613-15620. doi: 10.1021/acs.analchem.2c02146. Epub 2022 Nov 3.
Measurement of collision cross section (CCS), a parameter reflecting an ion's size and shape, alongside high-resolution mass analysis extends the depth of molecular analysis by providing structural information beyond molecular mass alone. Although these measurements are most commonly undertaken using a dedicated ion mobility cell coupled to a mass spectrometer, alternative methods have emerged to extract CCSs directly by analysis of the decay rates of either time-domain transient signals or the FWHM of frequency domain peaks in FT mass analyzers. This information is also accessible from FTMS mass spectra obtained in commonly used workflows directly without the explicit access to transient or complex Fourier spectra. Previously, these experiments required isolation of individual charge states of ions prior to CCS analysis, limiting throughput. Here we advance Orbitrap CCS measurements to more users and applications by determining CCSs from commonly available mass spectra files as well as estimating CCS for multiple charge states simultaneously and showcase these methods by the measurement of CCSs of fragment ions produced from collisional activation of proteins.
测量碰撞截面(CCS),这是一个反映离子大小和形状的参数,与高分辨率质量分析一起,通过提供超出分子量的结构信息,扩展了分子分析的深度。虽然这些测量通常使用与质谱仪耦合的专用离子淌度池进行,但已经出现了替代方法,可以通过分析时域瞬态信号的衰减率或傅里叶变换质量分析仪中频域峰的半峰全宽,直接提取 CCS。FTMS 质谱图也可以从常用工作流程中直接获得这些信息,而无需明确访问瞬态或复杂的傅里叶谱。以前,这些实验需要在 CCS 分析之前分离离子的单个电荷态,从而限制了通量。在这里,我们通过从常用的质谱文件中确定 CCS,以及同时估算多个电荷态的 CCS,将 Orbitrap CCS 测量技术推进到更多的用户和应用中,并通过测量蛋白质碰撞激活产生的碎片离子的 CCS 来展示这些方法。