Suppr超能文献

利用昆虫嗅觉神经回路检测和区分人类癌症。

Harnessing insect olfactory neural circuits for detecting and discriminating human cancers.

作者信息

Farnum Alexander, Parnas Michael, Hoque Apu Ehsanul, Cox Elyssa, Lefevre Noël, Contag Christopher H, Saha Debajit

机构信息

Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48108, USA.

出版信息

Biosens Bioelectron. 2023 Jan 1;219:114814. doi: 10.1016/j.bios.2022.114814. Epub 2022 Oct 15.

Abstract

There is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons. We employed biological neural computations of the antennal lobe circuitry for generating spatiotemporal neuronal response templates corresponding to each cell culture VOC mixture, and employed these neuronal templates to distinguish oral cancer cell lines (SAS, Ca9-22, and HSC-3) vs. a non-cancer cell line (HaCaT). Our results demonstrate that three different human oral cancers can be robustly distinguished from each other and from a non-cancer oral cell line. By using high-dimensional population neuronal response analysis and leave-one-trial-out methodology, our approach yielded high classification success for each cell line tested. Our analyses achieved 76-100% success in identifying cell lines by using the population neural response (n = 194) collected for the entire duration of the cell culture study. We also demonstrate this cancer detection technique can distinguish between different types of oral cancers and non-cancer at different time-matched points of growth. This brain-based cancer detection approach is fast as it can differentiate between VOC mixtures within 250 ms of stimulus onset. Our brain-based cancer detection system comprises a novel VOC sensing methodology that incorporates entire biological chemosensory arrays, biological signal transduction, and neuronal computations in a form of a forward-engineered technology for cancer VOC detection.

摘要

有压倒性的证据表明,癌症的存在会改变细胞代谢过程,这些变化体现在癌细胞释放的挥发性有机化合物(VOC)成分中。在此,我们采用了一种新颖的正向工程方法,开发了一种基于昆虫嗅觉神经回路的VOC传感器用于癌症检测。我们从活体昆虫(蝗虫)触角叶神经元中获得了口腔癌细胞培养物VOC诱发的细胞外神经反应。我们利用触角叶回路的生物神经计算来生成与每种细胞培养物VOC混合物相对应的时空神经元反应模板,并利用这些神经元模板来区分口腔癌细胞系(SAS、Ca9-22和HSC-3)与非癌细胞系(HaCaT)。我们的结果表明,三种不同的人类口腔癌能够被稳健地相互区分,并且与非癌口腔细胞系区分开来。通过使用高维群体神经元反应分析和留一试验法,我们的方法对每个测试细胞系都取得了很高的分类成功率。我们的分析通过使用在细胞培养研究的整个过程中收集的群体神经反应(n = 194),在识别细胞系方面取得了76% - 100%的成功率。我们还证明了这种癌症检测技术能够在不同的时间匹配生长点区分不同类型的口腔癌和非癌情况。这种基于大脑的癌症检测方法速度很快,因为它能够在刺激开始后的250毫秒内区分VOC混合物。我们基于大脑的癌症检测系统包括一种新颖的VOC传感方法,该方法以前向工程技术的形式整合了整个生物化学传感阵列、生物信号转导和神经元计算,用于癌症VOC检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验