Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
Bioessays. 2023 Jan;45(1):e2200165. doi: 10.1002/bies.202200165. Epub 2022 Nov 3.
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (N ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce N , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.
我们假设,作为进化过程中最重要的事件之一,最初的内共生加速了谱系分化,我们称之为内共生棘轮。我们的提议得到了最近对光合变形虫 Paulinella 的研究的支持,该变形虫大约在 1.24 亿年前经历了主要的质体内共生。这个变形虫模型使我们能够探索光合作用细胞器(质体)起源对宿主谱系的早期影响。由于扩散和生殖隔离的限制降低了 N,从而导致局部适应,当前的数据表明,有效种群大小(N)在共生后加速分化中起着核心作用。我们假设,隔离的种群利用不同的策略和行为,并在非重叠的生态位中进行自我分类,以在细胞器整合的早期快速进化阶段最小化竞争。内共生棘轮为解释由破坏性选择和人口和种群变化驱动的共生后谱系进化提供了一个通用框架。另请参见此处的视频摘要:https://youtu.be/gYXrFM6Zz6Q。