School of Graduate Studies, Graduate Program in Molecular Bioscience and Program in Microbiology and Molecular Genetics, Rutgers University, New Brunswick, New Jersey, 08901, USA.
Department of Plant Biology, The Carnegie Institution for Science, Stanford, California, 94305, USA.
J Phycol. 2020 Aug;56(4):837-843. doi: 10.1111/jpy.13003. Epub 2020 May 5.
The uptake and conversion of a free-living cyanobacterium into a photosynthetic organelle by the single-celled Archaeplastida ancestor helped transform the biosphere from low to high oxygen. There are two documented, independent cases of plastid primary endosymbiosis. The first is the well-studied instance in Archaeplastida that occurred ca. 1.6 billion years ago, whereas the second occurred 90-140 million years ago, establishing a permanent photosynthetic compartment (the chromatophore) in amoebae in the genus Paulinella. Here, we briefly summarize knowledge about plastid origin in the Archaeplastida and then focus on Paulinella. In particular, we describe features of the Paulinella chromatophore that make it a model for examining earlier events in the evolution of photosynthetic organelles. Our review stresses recently gained insights into the evolution of chromatophore and nuclear encoded DNA sequences in Paulinella, metabolic connectivity between the endosymbiont and cytoplasm, and systems that target proteins into the chromatophore. We also describe future work with Paulinella, and the potential rewards and challenges associated with developing further this model system.
自由生活的蓝细菌被单细胞的远古真核生物祖先吸收并转化为光合作用细胞器,这帮助生物圈从低氧环境转变为高氧环境。有两个有记录的、独立的质体初级内共生案例。第一个是在远古真核生物中研究得很好的例子,发生在大约 16 亿年前,而第二个发生在 9000 到 1.4 亿年前,在变形虫属的 Paulinella 中建立了一个永久性的光合隔室(色素体)。在这里,我们简要总结了关于远古真核生物中质体起源的知识,然后重点介绍了 Paulinella。特别是,我们描述了 Paulinella 色素体的特征,这些特征使其成为研究光合细胞器进化早期事件的模型。我们的综述强调了最近在 Paulinella 中色素体和核编码 DNA 序列的进化、内共生体和细胞质之间的代谢连接以及将蛋白质靶向到色素体的系统方面的新见解。我们还描述了未来在 Paulinella 中的工作,以及开发这个模型系统所带来的潜在回报和挑战。