Suppr超能文献

具有分级结构的纳米纤维聚四氟乙烯/聚(ε-己内酯)膜,用于血管补片。

Nanofibrous polytetrafluoroethylene/poly(ε-caprolactone) membrane with hierarchical structures for vascular patch.

机构信息

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.

National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.

出版信息

J Tissue Eng Regen Med. 2022 Dec;16(12):1163-1172. doi: 10.1002/term.3354. Epub 2022 Nov 3.

Abstract

With the prevalence of cardiovascular diseases, developing cardiovascular supplements is becoming increasingly urgent. The ability of cells to rapidly adhere and proliferate to achieve endothelialization is extremely important for vascular grafts. In this work, we electrospun polytetrafluoroethylene (PTFE) nanofibrous membranes and used induced crystallization to manufacture poly(ε-caprolactone) (PCL) shish-kebab microstructures on PTFE nanofibers to overcome the inertness of PTFE, and promote cell adhesion and proliferation. PCL lamella periodically grew on the surface of PTFE nanofibers yielding a hierarchical structure, which improved the biocompatibility and mechanical properties of the PTFE nanofibrous membrane. The deposition of PCL lamella improved the hydrophilicity of electrospun PTFE nanofibers membrane, leading to good cell proliferation and adhesion. Also, due to the surface inertness of the substrate material PTFE, this PTFE/PCL composite film has good anti-platelet adhesion properties. Furthermore, cell proliferation could be regulated by controlling the integrity of the PCL crystal network. The vascular patch showed similar mechanical properties to natural blood vessels, providing a new strategy for vascular tissue engineering.

摘要

随着心血管疾病的流行,开发心血管补充剂变得越来越紧迫。细胞迅速粘附和增殖以实现内皮化的能力对血管移植物至关重要。在这项工作中,我们通过静电纺丝制备了聚四氟乙烯(PTFE)纳米纤维膜,并通过诱导结晶在 PTFE 纳米纤维上制造了聚(ε-己内酯)(PCL)shish-kebab 微结构,以克服 PTFE 的惰性,促进细胞粘附和增殖。PCL 层周期性地在 PTFE 纳米纤维表面生长,形成分层结构,从而提高了 PTFE 纳米纤维膜的生物相容性和机械性能。PCL 层的沉积提高了静电纺 PTFE 纳米纤维膜的亲水性,从而实现了良好的细胞增殖和粘附。此外,由于基底材料 PTFE 的表面惰性,这种 PTFE/PCL 复合膜具有良好的抗血小板粘附性能。此外,通过控制 PCL 晶体网络的完整性,可以调节细胞增殖。该血管补片具有与天然血管相似的机械性能,为血管组织工程提供了新的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验