Suppr超能文献

机器学习能否“转化”肽/类肽为小分子?以胃饥饿素受体配体为例。

Can machine learning 'transform' peptides/peptidomimetics into small molecules? A case study with ghrelin receptor ligands.

机构信息

Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada.

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada.

出版信息

Mol Divers. 2023 Oct;27(5):2239-2255. doi: 10.1007/s11030-022-10555-w. Epub 2022 Nov 4.

Abstract

There has been considerable interest in transforming peptides into small molecules as peptide-based molecules often present poorer bioavailability and lower metabolic stability. Our studies looked into building machine learning (ML) models to investigate if ML is able to identify the 'bioactive' features of peptides and use the features to accurately discriminate between binding and non-binding small molecules. The ghrelin receptor (GR), a receptor that is implicated in various diseases, was used as an example to demonstrate whether ML models derived from a peptide library can be used to predict small molecule binders. ML models based on three different algorithms, namely random forest, support vector machine, and extreme gradient boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small molecule GR ligands. The results indicated that ML models trained with a dataset exclusively composed of peptides/peptidomimetics provide limited predictive power for small molecules, but that ML models trained with a diverse dataset composed of an array of both peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy and false rates. The diversified models can accurately differentiate the binding small molecules from non-binding small molecules using an external validation set with new small molecules that we synthesized previously. Structural features that are the most critical contributors to binding activity were extracted and are remarkably consistent with the crystallography and mutagenesis studies.

摘要

人们对将肽转化为小分子的方法产生了浓厚的兴趣,因为基于肽的分子通常表现出较差的生物利用度和较低的代谢稳定性。我们的研究旨在构建机器学习 (ML) 模型,以研究 ML 是否能够识别肽的“生物活性”特征,并利用这些特征准确区分结合和非结合小分子。生长激素释放肽受体 (GR) 是一种与多种疾病相关的受体,被用作示例,以证明是否可以使用源自肽文库的 ML 模型来预测小分子配体。基于三种不同算法(随机森林、支持向量机和极端梯度提升)的 ML 模型是基于经过精心策划的肽/拟肽和小分子 GR 配体数据集构建的。结果表明,仅使用肽/拟肽数据集训练的 ML 模型对小分子的预测能力有限,但使用由多种肽/拟肽和小分子组成的多样化数据集训练的 ML 模型在准确性和假阳性率方面表现出色。多样化的模型可以使用我们之前合成的新小分子的外部验证集准确地区分结合小分子和非结合小分子。提取了对结合活性最关键的结构特征,这些特征与晶体学和突变研究非常一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验