Suppr超能文献

块状金属有机框架中金属分配的去卷积

Deconvolution of metal apportionment in bulk metal-organic frameworks.

作者信息

Xu Jun, Liu Xingwu, Liu Xingchen, Yan Tao, Wan Hongliu, Cao Zhi, Reimer Jeffrey A

机构信息

Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China.

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Sci Adv. 2022 Nov 4;8(44):eadd5503. doi: 10.1126/sciadv.add5503.

Abstract

We report a general route to decipher the apportionment of metal ions in bulk metal-organic frameworks (MOFs) by solid-state nuclear magnetic resonance spectroscopy. We demonstrate this route in MgNi-MOF-74, where we uncover all eight possible atomic-scale Mg/Ni arrangements through identification and quantification of the distinct chemical environments of C-labeled carboxylates as a function of the Ni content. Here, we use magnetic susceptibility, bond pathway, and density functional theory calculations to identify local metal bonding configurations. The results refute the notion of random apportionment from solution synthesis; rather, we reveal that only two of eight Mg/Ni arrangements are preferred in the Ni-incorporated MOFs. These preferred structural arrangements manifest themselves in macroscopic adsorption phenomena as illustrated by CO/CO breakthrough curves. We envision that this nondestructive methodology can be further applied to analyze bulk assembly of other mixed-metal MOFs, greatly extending the knowledge on structure-property relationships of MOFs and their derived materials.

摘要

我们报道了一种通过固态核磁共振光谱法来解析块状金属有机框架(MOF)中金属离子分配情况的通用方法。我们在MgNi-MOF-74中展示了这一方法,通过对作为镍含量函数的碳-13标记羧酸盐的不同化学环境进行识别和定量,我们揭示了所有八种可能的原子尺度的镁/镍排列方式。在这里,我们使用磁化率、键径和密度泛函理论计算来识别局部金属键合构型。结果驳斥了溶液合成中随机分配的观点;相反,我们发现,在掺入镍的MOF中,八种镁/镍排列方式中只有两种是优先的。这些优先的结构排列方式在宏观吸附现象中表现出来,如一氧化碳/二氧化碳穿透曲线所示。我们设想,这种无损方法可以进一步应用于分析其他混合金属MOF的块状组装,极大地扩展关于MOF及其衍生材料的结构-性能关系的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ccc/9635837/f0bd77310e05/sciadv.add5503-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验