Department of Chemistry, The University of Western Ontario , 1151 Richmond Street, London, Ontario, Canada N6A 5B7.
Acc Chem Res. 2018 Feb 20;51(2):319-330. doi: 10.1021/acs.accounts.7b00357. Epub 2017 Dec 18.
An exciting advance in materials science is the discovery of hybrid organic-inorganic solids known as metal-organic frameworks (MOFs). Although they have numerous important applications, the local structures, specific molecular-level features, and guest behaviors underpinning desirable properties and applications are often unknown. Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool for MOF characterization as it provides information complementary to that from X-ray diffraction (XRD). We describe our novel pursuits in the three primary applications of SSNMR for MOF characterization: interrogating the metal center, targeting linker molecules, and probing guests. MOFs have relatively low densities, and the incorporated metals are often quadrupolar nuclei, making SSNMR detection difficult. Recently, we examined the local structures of metal centers (i.e., Mg, Ti, Cu, Zn, Ga, Zr, In, Ba, La, Al) in representative MOFs by SSNMR at a high magnetic field of 21.1 T, addressing several important issues: (1) resolving chemically and crystallographically nonequivalent metal sites; (2) exploring the origin of disorder around metals; (3) refining local metal geometry; (4) probing the effects of activation and adsorption on the metal local environment; and (5) monitoring in situ phase changes in MOFs. Organic linkers can be characterized by H, C, and O SSNMR. Although the framework structure can be determined by X-ray diffraction, hydrogen atoms cannot be accurately located, and thus the local structure about hydrogen is poorly characterized. Our work demonstrates that magic-angle spinning (MAS) experiments at very high magnetic field along with ultrafast spinning rates and isotope dilution enables one to obtain ultrahigh resolution H MAS spectra of MOFs, yielding structural information truly complementary to that obtained from single-crystal XRD. Oxygen is a key constituent of many important MOFs but O SSNMR work on MOFs is scarce due to the low natural abundance of O. O enriched MOFs can now be prepared in an efficient and economically feasible manner using solvothermal approaches involving labeled HO water; the resulting O SSNMR spectra provide distinct spectral signatures of various key oxygen species in representative MOFs. MOFs are suitable for the capture of the greenhouse gas CO and the storage of energy carrier gases such as H and CH. A better understanding of gas adsorption obtained using C, H, and O SSNMR will enable researchers to improve performance and realize practical applications for MOFs as gas adsorbents and carriers. The combination of SSNMR with XRD allows us to determine the number of adsorption sites in the framework, identify the location of binding sites, gain physical insight into the nature and strength of host-guest interactions, and understand guest dynamics.
材料科学的一个令人兴奋的进展是发现了被称为金属有机骨架(MOFs)的混合有机-无机固体。尽管它们有许多重要的应用,但支撑理想性质和应用的局部结构、特定的分子水平特征和客体行为通常是未知的。固态核磁共振(SSNMR)是 MOF 表征的有力工具,因为它提供了与 X 射线衍射(XRD)互补的信息。我们描述了我们在 SSNMR 对 MOF 表征的三个主要应用中的新探索:探究金属中心、靶向连接体分子和探测客体。MOFs 的密度相对较低,所包含的金属通常是四极核,这使得 SSNMR 检测变得困难。最近,我们在 21.1 T 的高磁场下通过 SSNMR 检查了代表性 MOFs 中金属中心(即 Mg、Ti、Cu、Zn、Ga、Zr、In、Ba、La、Al)的局部结构,解决了几个重要问题:(1)解析化学和晶体学上不等价的金属位点;(2)探索金属周围无序的起源;(3)细化局部金属几何形状;(4)探测活化和吸附对金属局部环境的影响;(5)监测 MOFs 中的原位相变。有机配体可以通过 H、C 和 O SSNMR 进行表征。尽管可以通过 X 射线衍射确定骨架结构,但氢原子不能精确定位,因此氢的局部结构描述较差。我们的工作表明,在超高磁场下结合超快旋转速度和同位素稀释进行魔角旋转(MAS)实验,可以获得 MOFs 的超高分辨率 H MAS 光谱,从而获得真正与单晶 XRD 获得的结构信息互补的结构信息。氧是许多重要 MOFs 的关键组成部分,但由于氧的天然丰度低,MOFs 上的 O SSNMR 工作很少。现在可以通过涉及标记 HO 水的溶剂热方法以有效且经济可行的方式制备 O 富集 MOFs;所得的 O SSNMR 谱为代表性 MOFs 中的各种关键氧物种提供了独特的光谱特征。MOFs 适合捕获温室气体 CO 和储存能量载体气体,如 H 和 CH。使用 C、H 和 O SSNMR 获得的气体吸附的更好理解将使研究人员能够提高性能并实现 MOFs 作为气体吸附剂和载体的实际应用。SSNMR 与 XRD 的结合使我们能够确定骨架中的吸附位点数量、确定结合位点的位置、深入了解主客体相互作用的性质和强度,并理解客体动力学。