Suppr超能文献

载双金属纳米颗粒的碳化木材用作连续流动整体式微反应器还原 4-硝基苯酚。

Carbonized wood impregnated with bimetallic nanoparticles as a monolithic continuous-flow microreactor for the reduction of 4-nitrophenol.

机构信息

College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

J Hazard Mater. 2023 Feb 5;443(Pt B):130270. doi: 10.1016/j.jhazmat.2022.130270. Epub 2022 Oct 29.

Abstract

Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.

摘要

多孔整体式微反应器在催化应用中具有广阔的前景,但通常基于不可再生材料。在此,我们展示了一种负载氮/金纳米粒子的碳化木材(Ni/Au-CW)整体膜微反应器,用于高效还原 4-硝基苯酚。分层多孔木材结构支撑着均匀分布的异质双金属 Ni/Au 纳米粒子。由于这两个因素的共同作用,质量扩散和电子转移都得到了增强,从而使优化后的 Ni/Au-CW 膜在液体通过时具有 99.5%的优异还原效率。通过电子顺磁共振波谱和密度泛函理论计算研究了反应机理。双金属纳米粒子促进的吸引-排斥机制归因于 Ni 和 Au 的不同电负性。Ni/Au-CW 膜具有优异的催化性能,可适用于其他催化转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验