Ruffing Anne M, Davis Ryan W, Lane Todd W
Sandia National Laboratories, Molecular and Microbiology, P.O. Box 5800, MS 1413, Albuquerque, NM 87185, USA.
Sandia National Laboratories, Bioresource and Environmental Security, P.O. Box 969, MS 9292, Livermore, CA 94551, USA.
Curr Opin Biotechnol. 2022 Dec;78:102830. doi: 10.1016/j.copbio.2022.102830. Epub 2022 Oct 29.
While algae demonstrate potential as a sustainable fuel source, low productivities limit the economic realization of algal biofuels. High-throughput strain engineering, omics-informed genome-scale modeling, and microbiome engineering are key technologies for enabling algal biofuels. High-throughput strain engineering efforts generate improved traits, including high biomass productivity and lipid content, in diverse algal species. Genome-scale models, constructed with the aid of omics data, provide insight into metabolic limitations and guide rational algal strain engineering efforts. As outdoor cultivation systems introduce exogenous organisms, microbiome engineering seeks to eliminate harmful organisms and introduce beneficial species. Optimizing algal biomass production and lipid content using these technologies may overcome the productivity barrier for the commercialization of algal biofuels.
虽然藻类显示出作为可持续燃料来源的潜力,但低生产率限制了藻类生物燃料的经济实现。高通量菌株工程、组学信息的基因组规模建模和微生物组工程是实现藻类生物燃料的关键技术。高通量菌株工程努力在多种藻类物种中产生改良性状,包括高生物量生产率和脂质含量。借助组学数据构建的基因组规模模型有助于深入了解代谢限制,并指导合理的藻类菌株工程努力。由于室外培养系统会引入外源生物,微生物组工程旨在消除有害生物并引入有益物种。利用这些技术优化藻类生物量生产和脂质含量可能会克服藻类生物燃料商业化的生产率障碍。