Suppr超能文献

通过知识引导的多层代谢网络从已知物到未知物进行代谢物注释。

Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking.

机构信息

Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2022 Nov 4;13(1):6656. doi: 10.1038/s41467-022-34537-6.

Abstract

Liquid chromatography - mass spectrometry (LC-MS) based untargeted metabolomics allows to measure both known and unknown metabolites in the metabolome. However, unknown metabolite annotation is a major challenge in untargeted metabolomics. Here, we develop an approach, namely, knowledge-guided multi-layer network (KGMN), to enable global metabolite annotation from knowns to unknowns in untargeted metabolomics. The KGMN approach integrates three-layer networks, including knowledge-based metabolic reaction network, knowledge-guided MS/MS similarity network, and global peak correlation network. To demonstrate the principle, we apply KGMN in an in vitro enzymatic reaction system and different biological samples, with ~100-300 putative unknowns annotated in each data set. Among them, >80% unknown metabolites are corroborated with in silico MS/MS tools. Finally, we validate 5 metabolites that are absent in common MS/MS libraries through repository mining and synthesis of chemical standards. Together, the KGMN approach enables efficient unknown annotations, and substantially advances the discovery of recurrent unknown metabolites for common biological samples from model organisms, towards deciphering dark matter in untargeted metabolomics.

摘要

基于液相色谱-质谱联用(LC-MS)的非靶向代谢组学可以测量代谢组中的已知和未知代谢物。然而,未知代谢物的注释是非靶向代谢组学中的一个主要挑战。在这里,我们开发了一种方法,即知识引导的多层网络(KGMN),以实现非靶向代谢组学中从已知到未知的全局代谢物注释。KGMN 方法整合了三层网络,包括基于知识的代谢反应网络、知识引导的 MS/MS 相似性网络和全局峰相关性网络。为了验证原理,我们将 KGMN 应用于体外酶反应系统和不同的生物样本中,在每个数据集中标注了约 100-300 个假定的未知物。其中,超过 80%的未知代谢物与计算机 MS/MS 工具相吻合。最后,我们通过存储库挖掘和化学标准品的合成,验证了 5 种在常见 MS/MS 库中不存在的代谢物。总之,KGMN 方法能够有效地进行未知注释,大大推进了从模式生物常见生物样本中发现常见未知代谢物的工作,有助于揭示非靶向代谢组学中的“暗物质”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2316/9636193/afed1740db06/41467_2022_34537_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验