Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Department of Physics, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea.
Nat Commun. 2022 Nov 4;13(1):6631. doi: 10.1038/s41467-022-34553-6.
Fluorescence super-resolution microscopy has, over the last two decades, been extensively developed to access deep-subwavelength nanoscales optically. Label-free super-resolution technologies however have only achieved a slight improvement compared to the diffraction limit. In this context, we demonstrate a label-free imaging method, i.e., hyperbolic material enhanced scattering (HMES) nanoscopy, which breaks the diffraction limit by tailoring the light-matter interaction between the specimens and a hyperbolic material substrate. By exciting the highly confined evanescent hyperbolic polariton modes with dark-field detection, HMES nanoscopy successfully shows a high-contrast scattering image with a spatial resolution around 80 nm. Considering the wavelength at 532 nm and detection optics with a 0.6 numerical aperture (NA) objective lens, this value represents a 5.5-fold resolution improvement beyond the diffraction limit. HMES provides capabilities for super-resolution imaging where fluorescence is not available or challenging to apply.
荧光超分辨显微镜在过去二十年中得到了广泛的发展,以实现对深亚波长纳米尺度的光学访问。然而,与衍射极限相比,无标记超分辨技术仅取得了微小的改进。在这种情况下,我们展示了一种无标记成像方法,即双曲材料增强散射(HMES)纳米显微镜,该方法通过调整样品与双曲材料衬底之间的光物质相互作用来突破衍射极限。通过用暗场检测激发高度受限的消逝双曲极化激元模式,HMES 纳米显微镜成功地显示出具有约 80nm 空间分辨率的高对比度散射图像。考虑到 532nm 的波长和具有 0.6 数值孔径(NA)物镜的检测光学器件,该值代表超过衍射极限的 5.5 倍分辨率提高。HMES 提供了在荧光不可用或难以应用的情况下进行超分辨成像的能力。