Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany.
Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
Glia. 2023 Feb;71(2):391-414. doi: 10.1002/glia.24283. Epub 2022 Nov 5.
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
人类黄斑是一个具有坑状形态且富含视锥细胞的高度特化的视网膜区域。然而,我们对于视网膜中主要的神经胶质细胞—— Müller 细胞是如何适应这种环境的,仍知之甚少。我们比较了来自人和小鼠富含视锥细胞和视杆细胞的视网膜的蛋白质组学数据,并鉴定出了与视锥细胞和视杆细胞相关的 Müller 细胞的不同表达谱,这些表达谱集中在代表细胞外基质和细胞黏附的途径上。特别是,上皮斑蛋白(EPPK1),它被认为在中间丝组织中发挥作用,在黄斑 Müller 细胞中高度表达。此外,在人 Müller 细胞衍生的细胞系中敲除 EPPK1 导致牵引力下降,以及细胞大小、形状和丝状伪足特征的改变。我们在这里确定 EPPK1 是人类视网膜区域特化结构的核心分子,这可能使其能够在体内巨大的机械负荷下发挥特定功能。