National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania.
National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Măgurele, Romania; Faculty of Physics, University of Bucharest, Str. Atomistilor 405, 077125, Măgurele, Romania.
Biosens Bioelectron. 2023 Jan 15;220:114858. doi: 10.1016/j.bios.2022.114858. Epub 2022 Oct 31.
A novel electrochemical biosensor was developed to monitor fibroblast cells stress levels for the first time in situ under external stimuli based on the recognition of superoxide anion released upon cell damage. The biosensor comprised metallized polycaprolactone electrospun fibers covered with zinc oxide for improved cell adhesion and signal transduction, whilst stable bioconjugates of mercaptobenzoic acid-functionalized gold nanoparticles/superoxide dismutase were employed as recognition bioelements. Biosensors were first tested and optimized for in situ generated superoxide detection by fixed potential amperometry at +0.3 V, with minimal interferences from electroactive species in cell culture media. L929 fibroblast cells were then implanted on the optimized biosensor surface and the biosensor morphologically characterized by scanning electron microscopy (SEM) and fluorescence microscopy, which illustrated the network-type pattern of fibroblasts adjacent to the fiber scaffold. Fibroblast stress was induced by zymosan and monitored at the cells integrated biosensor using fixed potential amperometry (CA) with a sensitivity of 26 nA cm μg mL zymosan and electrochemical impedance spectroscopy (EIS), with similar sensitivity of the biosensor considering the Rs and Z' parameters of around 0.13 Ω cm μg mL and high correlation factors R of 0.9994. The obtained results underline the applicability of the here developed biosensor for the electrochemical screening of the fibroblast cells stress. The concept in using low-cost biocompatible polymeric fibers as versatile scaffolds for both enzyme immobilization and cell adhesion, opens a new path in developing biosensors for the in-situ investigation of a variety of cellular events.
一种新型电化学生物传感器首次被开发出来,用于在外部刺激下原位监测成纤维细胞的应激水平,其基于对细胞损伤时释放的超氧阴离子的识别。该生物传感器由金属化聚己内酯电纺纤维组成,表面覆盖氧化锌,以提高细胞黏附性和信号转导能力,而巯基苯甲酸功能化的金纳米粒子/超氧化物歧化酶的稳定生物缀合物则被用作识别生物元件。首先通过固定电位安培法在+0.3 V 下对原位生成的超氧阴离子进行检测和优化,以最小化细胞培养基中电化学活性物质的干扰。然后将 L929 成纤维细胞植入优化后的生物传感器表面,并通过扫描电子显微镜(SEM)和荧光显微镜对生物传感器进行形态学表征,结果显示了纤维支架旁成纤维细胞的网络状图案。通过用固定电位安培法(CA)和电化学阻抗谱(EIS)诱导几丁质酶诱导的成纤维细胞应激,并在细胞整合生物传感器上进行监测,CA 的灵敏度为 26 nA cm μg mL 几丁质酶,EIS 的灵敏度与生物传感器相似,考虑到 Rs 和 Z'参数约为 0.13 Ω cm μg mL 和高相关系数 R 为 0.9994。研究结果强调了所开发的生物传感器在电化学筛选成纤维细胞应激方面的适用性。该概念使用低成本生物相容性聚合物纤维作为酶固定和细胞黏附的多功能支架,为原位研究各种细胞事件的生物传感器的开发开辟了新途径。