Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.
Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University (FIU), 11200 SW 8th Street, AHC-5, Miami, FL, 33199, USA.
Anal Bioanal Chem. 2024 Sep;416(21):4727-4737. doi: 10.1007/s00216-024-05437-z. Epub 2024 Jul 17.
Reactive oxygen species (ROS) including the superoxide anion (O) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O release in cell cultures for extended periods (> 8 h) using an O specific microelectrode. To achieve the sensitivity and selectivity requirements for cellular sensing, we developed a biohybrid system consisting of superoxide dismutase (SOD) and TiCT MXenes, deposited on a gold microwire electrode (AuME) as O specific materials with catalytic amplification through the synergistic action of the enzyme and the biomimetic MXenes-based structure. The biosensor demonstrated a sensitivity of 18.35 nA/μM with a linear range from 147 to 930 nM in a cell culture medium. To demonstrate its robustness and practicality, we applied the biosensor to monitor O levels in human leukemia monocytic THP-1 cells upon stimulation with lipopolysaccharide (LPS). Using this strategy, we successfully monitored LPS-induced O in THP-1 cells, as well as the quenching effect induced by the ROS scavenger N-acetyl-L-cysteine (NAC). The biosensor is generally useful for exploring the role of oxidative stress and longitudinally monitoring O release in cell cultures, enabling studies of biochemical processes and associated oxidative stress mechanisms in cellular and other biological environments.
活性氧物种 (ROS) 包括超氧阴离子 (O),通常在细胞培养物中使用荧光染料进行研究,这些染料只能提供离散的单点测量。这些方法缺乏在长时间监测过程中以定量方式评估 O 动力学和释放的能力。在此,我们介绍了一种电化学生物传感器的制造和应用,该传感器使用 O 特异性微电极能够实时连续监测细胞培养物中 O 的释放,监测时间可延长 (>8 h)。为了实现细胞传感的灵敏度和选择性要求,我们开发了一种由超氧化物歧化酶 (SOD) 和 TiCT MXenes 组成的生物杂交系统,将其沉积在金微丝电极 (AuME) 上作为 O 特异性材料,通过酶和仿生 MXenes 基结构的协同作用实现催化放大。该生物传感器在细胞培养基中的灵敏度为 18.35 nA/μM,线性范围为 147 至 930 nM。为了证明其鲁棒性和实用性,我们将该生物传感器应用于监测脂多糖 (LPS) 刺激人白血病单核细胞 THP-1 细胞时的 O 水平。使用这种策略,我们成功地监测了 LPS 诱导的 THP-1 细胞中的 O 以及 ROS 清除剂 N-乙酰-L-半胱氨酸 (NAC) 诱导的淬灭效应。该生物传感器通常可用于探索氧化应激的作用并纵向监测细胞培养物中 O 的释放,从而能够研究细胞和其他生物环境中的生化过程和相关氧化应激机制。