Lin T, Peng S, Lu S, Fu S, Zeng D, Li J, Chen T, Fan T, Lang C, Feng S, Ma J, Zhao C, Antony B, Cicuttini F, Quan X, Zhu Z, Ding C
Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
Osteoarthritis Cartilage. 2023 Feb;31(2):267-278. doi: 10.1016/j.joca.2022.10.014. Epub 2022 Nov 2.
To develop and validate a nomogram to detect improved knee pain in osteoarthritis (OA) by integrating magnetic resonance imaging (MRI) radiomics signature of subchondral bone and clinical characteristics.
Participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. The primary outcome was 20% improvement of knee pain score over 2 years in participants administrated either vitamin D or placebo. Radiomics features of subchondral bone and clinical characteristics from 216 participants were extracted and analyzed. The participants were randomly split into the training and validation cohorts at a ratio of 8:2. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate radiomics signatures. The optimal radiomics signature and clinical indicators were fitted into a nomogram using multivariable logistic regression model.
The nomogram showed favorable discrimination performance [AUC, 0.79 (95% CI: 0.72-0.79), AUC, 0.83 (95% CI: 0.70-0.96)] as well as a good calibration. Additional contributing value of fusion radiomics signature to the nomogram was statistically significant (NRI, 0.23; IDI, 0.14, P < 0.001 in training cohort and NRI, 0.29; IDI, 0.18, P < 0.05 in validating cohort). Decision curve analysis confirmed the clinical usefulness of nomogram.
The radiomics-based nomogram comprising the MR radiomics signature and clinical variables achieves a favorable predictive efficacy and accuracy in differentiating improvement in knee pain among OA patients. This proof-of-concept study provides a promising way to predict clinically meaningful outcomes.
通过整合软骨下骨的磁共振成像(MRI)放射组学特征和临床特征,开发并验证一种列线图,以检测骨关节炎(OA)患者膝关节疼痛的改善情况。
参与者选自维生素D对骨关节炎影响(VIDEO)研究。主要结局是接受维生素D或安慰剂治疗的参与者在2年内膝关节疼痛评分改善20%。提取并分析了216名参与者的软骨下骨放射组学特征和临床特征。参与者以8:2的比例随机分为训练队列和验证队列。使用最小绝对收缩和选择算子(LASSO)回归来选择特征并生成放射组学特征。使用多变量逻辑回归模型将最佳放射组学特征和临床指标拟合到列线图中。
列线图显示出良好的鉴别性能[AUC,0.79(95%CI:0.72 - 0.79),AUC,0.83(95%CI:0.70 - 0.96)]以及良好的校准。放射组学特征融合对列线图的额外贡献值具有统计学意义(训练队列中NRI,0.23;IDI,0.14,P < 0.001;验证队列中NRI,0.29;IDI,0.18,P < 0.05)。决策曲线分析证实了列线图的临床实用性。
基于放射组学的列线图结合MR放射组学特征和临床变量,在区分OA患者膝关节疼痛改善情况方面具有良好的预测效能和准确性。这项概念验证研究提供了一种预测具有临床意义结局的有前景的方法。