School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom.
National Hospital for Neurology and Neurosurgery, Centre for Neuromuscular Diseases, University College London, London, United Kingdom.
J Peripher Nerv Syst. 2023 Mar;28(1):4-16. doi: 10.1111/jns.12520. Epub 2022 Nov 18.
Axon degeneration accounts for the poor clinical outcome in Guillain-Barré syndrome (GBS), yet no treatments target this key pathogenic stage. Animal models demonstrate anti-ganglioside antibodies (AGAb) induce axolemmal complement pore formation through which calcium flux activates the intra-axonal calcium-dependent proteases, calpains. We previously showed protection of axonal components using soluble calpain inhibitors in ex vivo GBS mouse models, and herein, we assess the potential of axonally-restricted calpain inhibition as a neuroprotective therapy operating in vivo. Using transgenic mice that over-express the endogenous human calpain inhibitor calpastatin (hCAST) neuronally, we assessed distal motor nerve integrity in our established GBS models. We induced immune-mediated injury with monoclonal AGAb plus a source of human complement. The calpain substrates neurofilament and AnkyrinG, nerve structural proteins, were assessed by immunolabelling and in the case of neurofilament, by single-molecule arrays (Simoa). As the distal intramuscular portion of the phrenic nerve is prominently targeted in our in vivo model, respiratory function was assessed by whole-body plethysmography as the functional output in the acute and extended models. hCAST expression protects distal nerve structural integrity both ex and in vivo, as shown by attenuation of neurofilament breakdown by immunolabelling and Simoa. In an extended in vivo model, while mice still initially undergo respiratory distress owing to acute conduction failure, the recovery phase was accelerated by hCAST expression. Axonal calpain inhibition can protect the axonal integrity of the nerve in an in vivo GBS paradigm and hasten recovery. These studies reinforce the strong justification for developing further animal and human clinical studies using exogenous calpain inhibitors.
轴突变性是吉兰-巴雷综合征(GBS)临床预后不良的原因,但尚无针对这一关键致病阶段的治疗方法。动物模型表明,抗神经节苷脂抗体(AGAb)通过形成轴突膜上的补体孔,使钙离子内流激活轴内钙依赖性蛋白酶——钙蛋白酶。我们之前在离体 GBS 小鼠模型中使用可溶性钙蛋白酶抑制剂证明了对轴突成分的保护作用,在此,我们评估了轴突限制钙蛋白酶抑制作为一种潜在的神经保护治疗方法在体内的作用。我们使用过表达内源性人钙蛋白酶抑制剂钙蛋白酶抑制蛋白(hCAST)的转基因小鼠,评估了我们建立的 GBS 模型中远端运动神经的完整性。我们使用单克隆 AGAb 加人类补体来源诱导免疫介导的损伤。通过免疫标记和神经丝的单分子阵列(Simoa)评估神经丝和锚蛋白 G 等轴突结构蛋白作为 calpain 底物的变化。由于膈神经的远端肌内部分在我们的体内模型中是明显的靶标,因此通过全身 plethysmography 评估呼吸功能作为急性和扩展模型的功能输出。hCAST 表达既能在体外也能在体内保护远端神经结构的完整性,这表现在免疫标记和 Simoa 检测到神经丝断裂减少。在一个扩展的体内模型中,尽管由于急性传导失败,小鼠最初仍会出现呼吸窘迫,但 hCAST 表达加速了恢复阶段。在体内 GBS 模型中,轴突钙蛋白酶抑制可以保护神经的轴突完整性,并加速恢复。这些研究进一步证明了使用外源性钙蛋白酶抑制剂进行进一步的动物和人体临床研究的充分理由。