Suppr超能文献

DLNLF-net:用于肝细胞癌恶性特征分析的去噪局部和非局部深度特征融合网络。

DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma.

机构信息

School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou 510080, China.

出版信息

Comput Methods Programs Biomed. 2022 Dec;227:107201. doi: 10.1016/j.cmpb.2022.107201. Epub 2022 Oct 25.

Abstract

INTRODUCTION

Hepatocellular carcinoma (HCC) is a primary liver cancer with high mortality rate. The degree of HCC malignancy is an important prognostic factor for predicting recurrence and survival after surgical resection or liver transplantation in clinical practice. Currently, deep features obtained from data-driven machine learning algorithms have demonstrated superior performance in characterising lesion features in medical imaging processing. However, previous convolutional neural network (CNN)-based studies on HCC lesion characterisation were based on traditional local deep features. The aim of this study was to propose a denoised local and non-local deep features fusion network (DLNLF-net) for grading HCC.

METHODS

Gadolinium-diethylenetriaminepentaacetic-acid-enhanced magnetic resonance imaging data of 117 histopathologically proven HCCs were collected from 112 patients with resected HCC between October 2012 and October 2018. The proposed DLNLF-net primarily consists of three modules: feature denoising, non-local feature extraction, and bilinear kernel fusion. First, local feature maps were extracted from the original tumour images using convolution operations, followed by a feature denoising block to generate denoised local features. Simultaneously, a non-local feature extraction block was employed on the local feature maps to generate non-local features. Finally, the two generated features were fused using a bilinear kernel model to output the classification results. The dataset was divided into a training set (77 HCC images) and an independent test set (40 HCC images). Training and independent testing were repeated five times to reduce measurement errors. Accuracy, sensitivity, specificity, and area under the curve (AUC) values in the five repetitive tests were calculated to evaluate the performance of the proposed method.

RESULTS

Denoised local features (AUC 89.19%) and non-local features (AUC 88.28%) showed better performance than local features (AUC 86.21%) and global average pooling features (AUC 87.1%) that were derived from a CNN for malignancy characterisation of HCC. Furthermore, the proposed DLNFL-net yielded superior performance (AUC 94.89%) than a typical 3D CNN (AUC 86.21%), bilinear CNN (AUC 90.46%), recently proposed local and global diffusion method (AUC 93.94%), and convolutional block attention module method (AUC 93.62%) for malignancy characterisation of HCC.

CONCLUSION

The non-local operation demonstrated a better capability of yielding global representation, and feature denoising based on the non-local operation achieved performance gains for lesion characterisation. The proposed DLNLF-net, which integrates denoised local and non-local deep features, evidently outperforms conventional CNN-based methods in the malignancy characterisation of HCC.

摘要

介绍

肝细胞癌(HCC)是一种高死亡率的原发性肝癌。HCC 的恶性程度是预测手术切除或肝移植后复发和生存的重要预后因素。目前,数据驱动的机器学习算法提取的深度特征在医学影像处理中对病灶特征的描述具有优异的性能。然而,以前基于卷积神经网络(CNN)的 HCC 病变特征描述研究是基于传统的局部深度特征。本研究旨在提出一种用于 HCC 分级的去噪局部和非局部深度特征融合网络(DLNLF-net)。

方法

收集 2012 年 10 月至 2018 年 10 月期间 112 例接受 HCC 切除术患者的 117 例经病理证实的 HCC 钆二乙三胺五乙酸增强磁共振成像数据。所提出的 DLNLF-net 主要由三个模块组成:特征去噪、非局部特征提取和双线性核融合。首先,使用卷积运算从原始肿瘤图像中提取局部特征图,然后使用特征去噪模块生成去噪的局部特征。同时,在局部特征图上使用非局部特征提取模块生成非局部特征。最后,使用双线性核模型融合两个生成的特征,输出分类结果。数据集分为训练集(77 个 HCC 图像)和独立测试集(40 个 HCC 图像)。重复五次训练和独立测试,以减少测量误差。五次重复测试中的准确性、敏感性、特异性和曲线下面积(AUC)值用于评估所提出方法的性能。

结果

去噪的局部特征(AUC 89.19%)和非局部特征(AUC 88.28%)在恶性肿瘤特征描述方面的性能优于局部特征(AUC 86.21%)和全局平均池化特征(AUC 87.1%),这些特征是从用于 HCC 恶性特征描述的 CNN 中提取的。此外,与典型的 3D CNN(AUC 86.21%)、双线性 CNN(AUC 90.46%)、最近提出的局部和全局扩散方法(AUC 93.94%)和卷积块注意力模块方法(AUC 93.62%)相比,所提出的 DLNFL-net 用于 HCC 恶性特征描述的性能更优。

结论

非局部操作在提取全局表示方面具有更好的能力,基于非局部操作的特征去噪在病灶特征描述方面取得了性能提升。所提出的 DLNLF-net 集成了去噪的局部和非局部深度特征,在 HCC 的恶性特征描述方面明显优于基于传统 CNN 的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验