Suppr超能文献

深度学习辅助在肝脏对比增强磁共振成像(MRI)上鉴别经病理证实的非典型和典型肝细胞癌(HCC)与非HCC。

Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver.

作者信息

Oestmann Paula M, Wang Clinton J, Savic Lynn J, Hamm Charlie A, Stark Sophie, Schobert Isabel, Gebauer Bernhard, Schlachter Todd, Lin MingDe, Weinreb Jeffrey C, Batra Ramesh, Mulligan David, Zhang Xuchen, Duncan James S, Chapiro Julius

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Institute of Radiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, 10117, Berlin, Germany.

出版信息

Eur Radiol. 2021 Jul;31(7):4981-4990. doi: 10.1007/s00330-020-07559-1. Epub 2021 Jan 6.

Abstract

OBJECTIVES

To train a deep learning model to differentiate between pathologically proven hepatocellular carcinoma (HCC) and non-HCC lesions including lesions with atypical imaging features on MRI.

METHODS

This IRB-approved retrospective study included 118 patients with 150 lesions (93 (62%) HCC and 57 (38%) non-HCC) pathologically confirmed through biopsies (n = 72), resections (n = 29), liver transplants (n = 46), and autopsies (n = 3). Forty-seven percent of HCC lesions showed atypical imaging features (not meeting Liver Imaging Reporting and Data System [LI-RADS] criteria for definitive HCC/LR5). A 3D convolutional neural network (CNN) was trained on 140 lesions and tested for its ability to classify the 10 remaining lesions (5 HCC/5 non-HCC). Performance of the model was averaged over 150 runs with random sub-sampling to provide class-balanced test sets. A lesion grading system was developed to demonstrate the similarity between atypical HCC and non-HCC lesions prone to misclassification by the CNN.

RESULTS

The CNN demonstrated an overall accuracy of 87.3%. Sensitivities/specificities for HCC and non-HCC lesions were 92.7%/82.0% and 82.0%/92.7%, respectively. The area under the receiver operating curve was 0.912. CNN's performance was correlated with the lesion grading system, becoming less accurate the more atypical imaging features the lesions showed.

CONCLUSION

This study provides proof-of-concept for CNN-based classification of both typical- and atypical-appearing HCC lesions on multi-phasic MRI, utilizing pathologically confirmed lesions as "ground truth."

KEY POINTS

• A CNN trained on atypical appearing pathologically proven HCC lesions not meeting LI-RADS criteria for definitive HCC (LR5) can correctly differentiate HCC lesions from other liver malignancies, potentially expanding the role of image-based diagnosis in primary liver cancer with atypical features. • The trained CNN demonstrated an overall accuracy of 87.3% and a computational time of < 3 ms which paves the way for clinical application as a decision support instrument.

摘要

目的

训练一个深度学习模型,以区分经病理证实的肝细胞癌(HCC)和非HCC病变,包括磁共振成像(MRI)上具有非典型影像特征的病变。

方法

这项经机构审查委员会(IRB)批准的回顾性研究纳入了118例患者的150个病变(93个(62%)HCC和57个(38%)非HCC),这些病变通过活检(n = 72)、手术切除(n = 29)、肝移植(n = 46)和尸检(n = 3)进行病理确诊。47%的HCC病变表现出非典型影像特征(不符合肝脏影像报告和数据系统[LI-RADS]中确定性HCC/LR5的标准)。在140个病变上训练了一个三维卷积神经网络(CNN),并测试其对其余10个病变(5个HCC/5个非HCC)进行分类的能力。通过随机子采样在150次运行中对模型的性能进行平均,以提供类别平衡的测试集。开发了一种病变分级系统,以证明非典型HCC与容易被CNN误分类的非HCC病变之间的相似性。

结果

CNN的总体准确率为87.3%。HCC和非HCC病变的敏感度/特异度分别为92.7%/82.0%和82.0%/92.7%。受试者操作特征曲线下面积为0.912。CNN的性能与病变分级系统相关,病变表现出的非典型影像特征越多,其准确性越低。

结论

本研究为基于CNN对多期MRI上典型和非典型表现的HCC病变进行分类提供了概念验证,将经病理证实的病变作为“金标准”。

要点

• 在不符合LI-RADS中确定性HCC(LR5)标准的非典型病理证实的HCC病变上训练的CNN可以正确区分HCC病变与其他肝脏恶性肿瘤,可能扩大基于影像的诊断在具有非典型特征的原发性肝癌中的作用。• 训练后的CNN总体准确率为87.3%,计算时间<3毫秒,为作为决策支持工具的临床应用铺平了道路。

相似文献

引用本文的文献

6
Artificial intelligence in imaging for liver disease diagnosis.用于肝病诊断的成像中的人工智能。
Front Med (Lausanne). 2025 Apr 25;12:1591523. doi: 10.3389/fmed.2025.1591523. eCollection 2025.
9
Application of artificial intelligence in the diagnosis of hepatocellular carcinoma.人工智能在肝细胞癌诊断中的应用。
eGastroenterology. 2023 Nov 30;1(2):e100002. doi: 10.1136/egastro-2023-100002. eCollection 2023 Sep.

本文引用的文献

2
Indications for liver surgery in benign tumours.肝脏良性肿瘤的手术指征。
Eur Surg. 2018;50(3):125-131. doi: 10.1007/s10353-018-0536-y. Epub 2018 May 22.
4
Machine Learning for Medical Imaging.用于医学成像的机器学习
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验