Ayman Radwa, Radwan A M, Elmetwally Amira M, Ammar Yousry A, Ragab Ahmed
Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
Department of Raw Material, Egyptian drug authority (EDA), Giza, Egypt.
Arch Pharm (Weinheim). 2023 Feb;356(2):e2200395. doi: 10.1002/ardp.202200395. Epub 2022 Nov 6.
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
为了寻找有效且具有选择性的抗炎剂,我们的研究涉及设计和合成新的吡唑和吡唑并[1,5 - a]嘧啶衍生物4 - 11。使用不同的光谱技术确认了合成衍生物的结构。通过计算机对接模拟,在被分类为两种环氧化酶(COX)-1(蛋白质数据银行(PDB)编号:3KK6和4OIZ)和两种COX - 2(PBD编号:1CX2和3LN1)的四种蛋白质的活性位点内,对新设计的衍生物进行了虚拟筛选。其中,六种衍生物4c、5b、6a、7a、7b和10b表现出最高的结合能。对这些衍生物进行了体外COX - 1和COX - 2抑制活性评估,并计算了它们的选择性指数。此外,这些衍生物对COX - 1和COX - 2的半数抑制浓度(IC)值分别在4.909±0.25至57.53±2.91μM和3.289±0.14至124±5.32μM之间。此外,测试的衍生物对COX - 2酶具有选择性抑制活性。令人惊讶的是,发现两种吡唑衍生物4c和5b活性最高,与美洛昔康(分别为1.879±0.1和5.409±0.23μM)和塞来昔布(分别为5.439±0.28和2.164±0.09μM)相比,它们对COX - 1/-2的IC值分别为9.835±0.50和4.909±0.25μM以及4.597±0.20和3.289±0.14μM。此外,两种吡唑衍生物4c和5b的COX - 1/COX - 2选择性指数分别为2.14和1.49。应用了诸如分子对接、密度泛函理论(DFT)计算以及化学吸收、分布、代谢、排泄和毒性评估等计算技术来解释分子的结合模式、化学性质、药物相似性和毒性预测。